English

If A, B and C are angles of a triangle, then the determinant CBCABA|-1cosCcosBcosC-1cosAcosBcosA-1| is equal to ______. - Mathematics

Advertisements
Advertisements

Question

If A, B and C are angles of a triangle, then the determinant `|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` is equal to ______.

Options

  • 0

  • – 1

  • 1

  • None of these

MCQ
Fill in the Blanks

Solution

If A, B and C are angles of a triangle, then the determinant `|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` is equal to 0.

Explanation:

Let Δ = `|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|`

C1 → aC1 + bC2 + cC3

⇒ `|(-"a" + "b" cos"C" + "c" cos "B", cos "C", cos"B"),("a" cos "C" - "b" + "c" cos"A", -1, cos"A"),("a"cos"b" + "b" cos"A" - "C", cos"A", -1)|`

⇒ `|(-"a" + "a", cos"C", cos"B"),(-"b" + "b", -1, cos"A"),(-"c" + "c", cos"A", -1)|`   ....`[(because "From projection formula"),("a" = "b" cos"C" + "c" cos"B"),("b"  = "a" cos "C" + "c" cos "a"),("c" = "b" cos "A" + "a" cos "B")]`

⇒ `[(0, cos "C", cos "B"),(0, -1, cos"A"),(0, cos"A", -1)]` = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise [Page 81]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 4 Determinants
Exercise | Q 29 | Page 81

RELATED QUESTIONS

Using the properties of determinants, prove the following:

`|[1,x,x+1],[2x,x(x-1),x(x+1)],[3x(1-x),x(x-1)(x-2),x(x+1)(x-1)]|=6x^2(1-x^2)`


Using the property of determinants and without expanding, prove that:

`|(b+c, q+r, y+z),(c+a, r+p, z +x),(a+b, p+q, x + y )| = 2|(a,p,x),(b,q,y),(c, r,z)|`


By using properties of determinants, show that:

`|(1,a,a^2),(1,b,b^2),(1,c,c^2)| = (a - b)(b-c)(c-a)`


By using properties of determinants, show that:

`|(x+4,2x,2x),(2x,x+4,2x),(2x , 2x, x+4)| = (5x + 4)(4-x)^2`


By using properties of determinants, show that:

`|(y+k,y, y),(y, y+k, y),(y, y, y+k)| = k^2(3y + k)`


 Using properties of determinants, prove that: 

`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`


Using properties of determinant prove that 

`|(b+c , a , a), (b , c+a, b), (c, c, a+b)|` = 4abc


Using properties of determinants, find the value of x for which
`|(4-"x",4+"x",4+"x"),(4+"x",4-"x",4+"x"),(4+"x",4+"x",4-"x")|= 0`


Without expanding the determinants, show that `|("b" + "c", "bc", "b"^2"c"^2),("c" + "a", "ca", "c"^2"a"^2),("a" +  "b", "ab", "a"^2"b"^2)|` = 0


Without expanding the determinants, show that `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


Without expanding determinants show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + 4|(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`


Select the correct option from the given alternatives:

The determinant D = `|("a", "b", "a" + "b"),("b", "c", "b" + "c"),("a" + "b", "b" + "c", 0)|` = 0 if


Select the correct option from the given alternatives:

Which of the following is correct


Answer the following question:

Without expanding determinant show that

`|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`


Evaluate: `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`


Evaluate: `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


The value of determinant `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` is ______.


The determinant `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` equals ______.


If `abs ((2"x",5),(8, "x")) = abs ((6,-2),(7,3)),`  then the value of x is ____________.


If the ratio of the H.M. and GM. between two numbers a and bis 4 : 5, then a: b is


Let 'A' be a square matrix of order 3 × 3, then |KA| is equal to:


The value of the determinant `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|` is equal to ______.


Without expanding determinants find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding determinants find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


Without expanding determinants, find the value of  `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding evaluate the following determinant.

`|(1,"a","b+c"),(1,"b","c+a"),(1,"c","a+b")|`


The value of the determinant of a matrix A of order 3 is 3. If C is the matrix of cofactors of the matrix A, then what is the value of determinant of C2?


Without expanding determinants, find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×