Advertisements
Advertisements
Question
Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.
Options
0
– 1
2
3
Solution
Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to 0.
Explanation:
We have f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`
Expanding along R1
= `cos "t"|("t", 2"t"),("t", "t")| - "t"|(2 sin "t", 2"t"),(sin"t", "t")| + 1|(2 sin "t", "t"),(sin"t", "t")|`
= cos t(t2 – 2t) – t(2t sint – 2t sin t) + (2t sin t – t sin t)
= –t2 cos t + t sin t
∴ `("f"("t"))/"t"^2 = ("t"^2 cos"t" + "t" sin"t")/"t"^2`
⇒ `("f"("t"))/"t"^2 = - cos "t" + (sin "t")/"t"`
⇒ `lim_("t" -> 0) ("f"("t"))/"t"^2 = lim_("t" -> 0) (- cos "t") + lim_("t" -> 0) (sin "t")/"t"`
= – 1 + 1
= 0
APPEARS IN
RELATED QUESTIONS
Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`
Let A be a square matrix of order 3 × 3, then | kA| is equal to
(A) k|A|
(B) k2 | A |
(C) k3 | A |
(D) 3k | A |
On expanding by first row, the value of the determinant of 3 × 3 square matrix
\[A = \left[ a_{ij} \right]\text{ is }a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}\] , where [Cij] is the cofactor of aij in A. Write the expression for its value on expanding by second column.
Let A = [aij] be a square matrix of order 3 × 3 and Cij denote cofactor of aij in A. If |A| = 5, write the value of a31 C31 + a32 C32 a33 C33.
A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.
If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\] then write the value of k.
If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A–1) = (det A)k.
Which of the following is not correct in a given determinant of A, where A = [aij]3×3.
If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .
Using matrices, solve the following system of linear equations :
x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11
If Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, then show that ∆ is equal to zero.
If x = – 4 is a root of Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, then find the other two roots.
If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval.
If x, y, z are all different from zero and `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, then value of x–1 + y–1 + z–1 is ______.
There are two values of a which makes determinant, ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, then sum of these number is ______.
If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = ______.
The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`
If A, B, and C be the three square matrices such that A = B + C, then Det A is equal to
The value of the determinant `abs ((1,0,0),(2, "cos x", "sin x"),(3, "sin x", "cos x"))` is ____________.
If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.
If `"abc" ne 0 "and" abs ((1 + "a", 1, 1),(1, 1 + "b", 1),(1,1,1 + "c")) = 0, "then" 1/"a" + 1/"b" + 1/"c" =` ____________.
Let A be a square matrix of order 2 x 2, then `abs("KA")` is equal to ____________.
For positive numbers x, y, z the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 3, log_y z),(log_z x, log_z y, 5)|` is
In a third order matrix aij denotes the element of the ith row and the jth column.
A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`
Assertion: Matrix ‘A’ is not invertible.
Reason: Determinant A = 0
Which of the following is correct?