Advertisements
Advertisements
Question
If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\] then write the value of k.
Solution
\[\text{ Let }A = \begin{bmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{bmatrix} . \]
\[\text{ then, } 3A = \begin{bmatrix}3 a_1 & 3 a_2 & 3 a_3 \\ 3 b_1 & 3 b_2 & 3 b_3 \\ 3 c_1 & 3 c_2 & 3 c_3\end{bmatrix} . \]
\[\left| 3A \right| = \begin{vmatrix}3 a_1 & 3 a_2 & 3 a_3 \\ 3 b_1 & 3 b_2 & 3 b_3 \\ 3 c_1 & 3 c_2 & 3 c_3\end{vmatrix}\]
\[ = 3^3 \begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix} \left[\text{ Taking 3 common from ach row }\right]\]
\[ = 27\left| A \right|\]
Hence, the value of k is 27.
APPEARS IN
RELATED QUESTIONS
If A = `[(1,1,-2),(2,1,-3),(5,4,-9)]`, Find |A|
Using the property of determinants and without expanding, prove that:
`|(x, a, x+a),(y,b,y+b),(z,c, z+ c)| = 0`
Without expanding at any stage, find the value of:
`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`
On expanding by first row, the value of the determinant of 3 × 3 square matrix
\[A = \left[ a_{ij} \right]\text{ is }a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}\] , where [Cij] is the cofactor of aij in A. Write the expression for its value on expanding by second column.
Let A = [aij] be a square matrix of order 3 × 3 and Cij denote cofactor of aij in A. If |A| = 5, write the value of a31 C31 + a32 C32 a33 C33.
A matrix A of order 3 × 3 is such that |A| = 4. Find the value of |2 A|.
Which of the following is not correct?
Which of the following is not correct in a given determinant of A, where A = [aij]3×3.
If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .
Solve the following system of linear equations using matrix method:
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2
Show that Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)`
If Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, then show that ∆ is equal to zero.
If x = – 4 is a root of Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, then find the other two roots.
The determinant ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|` is independent of x only.
If a + b + c ≠ 0 and `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` 0, then prove that a = b = c.
Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.
Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.
If f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, then ______.
If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.
If x, y, z are all different from zero and `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, then value of x–1 + y–1 + z–1 is ______.
There are two values of a which makes determinant, ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, then sum of these number is ______.
If A is a matrix of order 3 × 3, then |3A| = ______.
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = ______.
If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = ______.
If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.
`"A" = abs ((1/"a", "a"^2, "bc"),(1/"b", "b"^2, "ac"),(1/"c", "c"^2, "ab"))` is equal to ____________.
If A, B, and C be the three square matrices such that A = B + C, then Det A is equal to
`abs ((1 + "a", "b", "c"),("a", 1 + "b", "c"),("a", "b", 1 + "c")) =` ____________
If A = `[(1,0,0),(2,"cos x","sin x"),(3,"sin x", "-cos x")],` then det. A is equal to ____________.
Find the minor of the element of the second row and third column in the following determinant `[(2,-3,5),(6,0,4),(1,5,-7)]`
Find the 5th term of expansion of `(x^2 + 1/x)^10`?
Value of `|(2, 4),(-1, 2)|` is
In a third order matrix aij denotes the element of the ith row and the jth column.
A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`
Assertion: Matrix ‘A’ is not invertible.
Reason: Determinant A = 0
Which of the following is correct?