English

Prove tha bcacababccababcbcaabcbcacab|bc-a2ca-b2ab-c2ca-b2ab-c2bc-a2ab-c2bc-a2ca-b2| is divisible by a + b + c and find the quotient. - Mathematics

Advertisements
Advertisements

Question

Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.

Sum

Solution

Δ = `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|`

 [Applying C1 → C1 – C2 and C2 → C2 – C3]

Δ = `|("bc" - "a"^2 - "ca" + "b"^2,"ca" - "b"^2 - "ab" + "c"^2, "ab" - "c"^2),("ca" - "b"^2 - "ab" + "c"^2, "ab" - "c"^2 - "bc" + "a"^2, "bc" - "a"^2),("ab" - "c"^2 - "bc" + "a"^2, "bc" - "a"^2 - "ca" + "b"^2, "ca" - "b"^2)|`

= `|(("b" - "a")("a" + "b" + "c"), ("c" - "b")("a" + "b" + "c"), "ab" - "c"^2),(("c" - "b")("a" + "b" + "c"), ("a" - "c")("a" + "b" + "c"), "bc" - "a"^2),(("a" - "c")("a" + "b" + "c"), ("b" - "a")("a" + "b" + "c"), "ca" - "b"^2)|`

[Taking (a + b + c) common from C1 and C2 each]

Δ = `("a" + "b" + "c")^2 |("b" - "a", "c" - "b", "ab" - "c"^2),("c" - "b", "a" - "c", "bc" - "a"^2),("a" - "c", "b" - "a", "ca" - "b"^2)|`

[Applying R1 → R1 + R2  + R3]

Δ = `("a" + "b" + "c")^2 |(0, 0, "ab" + "bc" + "ca" - ("a"^2 + "b"^2 + "c"^2)),("c" - "b", "a" - "c", "bc" - "a"^2),("a" - "c", "b" - "a", "ca" - "b"^2)|`

[Expanding along R1]

Δ = `("a" + "b" + "c")^2 ["ab" + "bc" + "ca" - ("a"^2 + "b"^2 + "c"^2)][("c" - "b")("b" - "a") - ("a" - "c")^2]`

= `("a" + "b" + "c")^2 ("ab" + "bc" + "ca" - "a"^2 - "b"^2 - "c"^2) xx ("bc" - "ac" - "b"^2 + "ab" - "a"^2 - "c"^2 + 2"ac")`

= (a + b + c)[(a + b + c)(a2 + b2 + c2 – ab – bc – ca)2]

Hence, given determinant is divisible by (a + b + c) and quotient is (a + b + c)(a2 + b2 + c2 – ab – bc – ca)2

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise [Page 79]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 4 Determinants
Exercise | Q 22 | Page 79

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A matrix A of order 3 × 3 has determinant 5. What is the value of |3A|?

 

If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\]  then write the value of k.


If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A–1) = (det A)k.


Which of the following is not correct in a given determinant of A, where A = [aij]3×3.


If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .


Using matrices, solve the following system of linear equations :

x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11


Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0


Show that Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)` 


If x = – 4 is a root of Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, then find the other two roots.


The value of the determinant ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______.


If a1, a2, a3, ..., ar are in G.P., then prove that the determinant `|("a"_("r" + 1), "a"_("r" + 5), "a"_("r" + 9)),("a"_("r" + 7), "a"_("r" + 11), "a"_("r" + 15)),("a"_("r" + 11), "a"_("r" + 17), "a"_("r" + 21))|` is independent of r.


Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.


If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.


If x, y, z are all different from zero and `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, then value of x–1 + y–1 + z–1 is ______.


There are two values of a which makes determinant, ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, then sum of these number is ______.


If A is a matrix of order 3 × 3, then |3A| = ______.


If A is invertible matrix of order 3 × 3, then |A–1| ______.


`|(0, xyz, x - z),(y - x, 0, y  z),(z - x, z - y, 0)|` = ______.


`"A" = abs ((1/"a", "a"^2, "bc"),(1/"b", "b"^2, "ac"),(1/"c", "c"^2, "ab"))` is equal to ____________.


If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.


Let A be a square matrix of order 2 x 2, then `abs("KA")` is equal to ____________.


Find the 5th term of expansion of `(x^2 + 1/x)^10`?


The value of determinant `|(sin^2 13°, sin^2 77°, tan135°),(sin^2 77°, tan135°, sin^2 13°),(tan135°, sin^2 13°, sin^2 77°)|` is


In a third order matrix aij denotes the element of the ith row and the jth column.

A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`

Assertion: Matrix ‘A’ is not invertible.

Reason: Determinant A = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×