मराठी

Prove tha bcacababccababcbcaabcbcacab|bc-a2ca-b2ab-c2ca-b2ab-c2bc-a2ab-c2bc-a2ca-b2| is divisible by a + b + c and find the quotient. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.

बेरीज

उत्तर

Δ = `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|`

 [Applying C1 → C1 – C2 and C2 → C2 – C3]

Δ = `|("bc" - "a"^2 - "ca" + "b"^2,"ca" - "b"^2 - "ab" + "c"^2, "ab" - "c"^2),("ca" - "b"^2 - "ab" + "c"^2, "ab" - "c"^2 - "bc" + "a"^2, "bc" - "a"^2),("ab" - "c"^2 - "bc" + "a"^2, "bc" - "a"^2 - "ca" + "b"^2, "ca" - "b"^2)|`

= `|(("b" - "a")("a" + "b" + "c"), ("c" - "b")("a" + "b" + "c"), "ab" - "c"^2),(("c" - "b")("a" + "b" + "c"), ("a" - "c")("a" + "b" + "c"), "bc" - "a"^2),(("a" - "c")("a" + "b" + "c"), ("b" - "a")("a" + "b" + "c"), "ca" - "b"^2)|`

[Taking (a + b + c) common from C1 and C2 each]

Δ = `("a" + "b" + "c")^2 |("b" - "a", "c" - "b", "ab" - "c"^2),("c" - "b", "a" - "c", "bc" - "a"^2),("a" - "c", "b" - "a", "ca" - "b"^2)|`

[Applying R1 → R1 + R2  + R3]

Δ = `("a" + "b" + "c")^2 |(0, 0, "ab" + "bc" + "ca" - ("a"^2 + "b"^2 + "c"^2)),("c" - "b", "a" - "c", "bc" - "a"^2),("a" - "c", "b" - "a", "ca" - "b"^2)|`

[Expanding along R1]

Δ = `("a" + "b" + "c")^2 ["ab" + "bc" + "ca" - ("a"^2 + "b"^2 + "c"^2)][("c" - "b")("b" - "a") - ("a" - "c")^2]`

= `("a" + "b" + "c")^2 ("ab" + "bc" + "ca" - "a"^2 - "b"^2 - "c"^2) xx ("bc" - "ac" - "b"^2 + "ab" - "a"^2 - "c"^2 + 2"ac")`

= (a + b + c)[(a + b + c)(a2 + b2 + c2 – ab – bc – ca)2]

Hence, given determinant is divisible by (a + b + c) and quotient is (a + b + c)(a2 + b2 + c2 – ab – bc – ca)2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants - Exercise [पृष्ठ ७९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 4 Determinants
Exercise | Q 22 | पृष्ठ ७९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If A  = `[(1,1,-2),(2,1,-3),(5,4,-9)]`, Find |A|


Find values of x, if `|[2,3],[4,5]|=|[x,3],[2x,5]|`


Using the property of determinants and without expanding, prove that:

`|(x, a, x+a),(y,b,y+b),(z,c, z+ c)| = 0`


A matrix A of order 3 × 3 has determinant 5. What is the value of |3A|?

 

Let A = [aij] be a square matrix of order 3 × 3 and Cij denote cofactor of aij in A. If |A| = 5, write the value of a31 C31  +  a32 C32 a33 C33.


If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\]  then write the value of k.


Which of the following is not correct?


Solve the following system of linear equations using matrix method: 
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2


Using matrices, solve the following system of linear equations :

x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11


Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0


If Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, then show that ∆ is equal to zero.


If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval.


The determinant ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` is equal to ______.


The value of the determinant ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______.


The determinant ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|` is independent of x only.


If a + b + c ≠ 0 and `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` 0, then prove that a = b = c.


Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.


If x, y, z are all different from zero and `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, then value of x–1 + y–1 + z–1 is ______.


`|(0, xyz, x - z),(y - x, 0, y  z),(z - x, z - y, 0)|` = ______.


If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.


If A, B, and C be the three square matrices such that A = B + C, then Det A is equal to


The value of the determinant `abs ((1,0,0),(2, "cos x", "sin x"),(3, "sin x", "cos x"))` is ____________.


If A = `[(1,0,0),(2,"cos x","sin x"),(3,"sin x", "-cos x")],` then det. A is equal to ____________.


If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.


Let A be a square matrix of order 2 x 2, then `abs("KA")` is equal to ____________.


Find the 5th term of expansion of `(x^2 + 1/x)^10`?


In a third order matrix aij denotes the element of the ith row and the jth column.

A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`

Assertion: Matrix ‘A’ is not invertible.

Reason: Determinant A = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×