Advertisements
Advertisements
प्रश्न
Find values of x, if `|[2,3],[4,5]|=|[x,3],[2x,5]|`
उत्तर
`|[2,3],[4,5]|=|[x,3],[2x,5]|`
⇒ 2 × 5 - 3 × 4 = x × 5 - 3 × 2x
⇒ 10 - 12 = 5x - 6x
⇒ -2 = -x
⇒ x = 2
APPEARS IN
संबंधित प्रश्न
Using the property of determinants and without expanding, prove that:
`|(x, a, x+a),(y,b,y+b),(z,c, z+ c)| = 0`
Without expanding at any stage, find the value of:
`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`
Use properties of determinants to solve for x:
`|(x+a, b, c),(c, x+b, a),(a,b,x+c)| = 0` and `x != 0`
On expanding by first row, the value of the determinant of 3 × 3 square matrix
\[A = \left[ a_{ij} \right]\text{ is }a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}\] , where [Cij] is the cofactor of aij in A. Write the expression for its value on expanding by second column.
Let A = [aij] be a square matrix of order 3 × 3 and Cij denote cofactor of aij in A. If |A| = 5, write the value of a31 C31 + a32 C32 a33 C33.
A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.
A matrix A of order 3 × 3 is such that |A| = 4. Find the value of |2 A|.
If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A–1) = (det A)k.
Which of the following is not correct in a given determinant of A, where A = [aij]3×3.
If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .
Solve the following system of linear equations using matrix method:
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2
Using matrices, solve the following system of linear equations :
x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11
Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0
If Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, then show that ∆ is equal to zero.
If x = – 4 is a root of Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, then find the other two roots.
If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval.
The determinant ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` is equal to ______.
The value of the determinant ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______.
If a + b + c ≠ 0 and `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` 0, then prove that a = b = c.
Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.
Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.
If f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, then ______.
If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.
If A is a matrix of order 3 × 3, then |3A| = ______.
If A is invertible matrix of order 3 × 3, then |A–1| ______.
If A is a matrix of order 3 × 3, then (A2)–1 = ______.
If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.
If A, B, and C be the three square matrices such that A = B + C, then Det A is equal to
If `"abc" ne 0 "and" abs ((1 + "a", 1, 1),(1, 1 + "b", 1),(1,1,1 + "c")) = 0, "then" 1/"a" + 1/"b" + 1/"c" =` ____________.
Let A be a square matrix of order 2 x 2, then `abs("KA")` is equal to ____________.
Find the 5th term of expansion of `(x^2 + 1/x)^10`?
For positive numbers x, y, z the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 3, log_y z),(log_z x, log_z y, 5)|` is
For positive numbers x, y, z, the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` is
Value of `|(2, 4),(-1, 2)|` is