मराठी

If x = – 4 is a root of Δ = |x231x132x| = 0, then find the other two roots. - Mathematics

Advertisements
Advertisements

प्रश्न

If x = – 4 is a root of Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, then find the other two roots.

बेरीज

उत्तर

Applying R1 → (R1 + R2 + R3), we get

`|(x + 4, x + 4, x + 4),(1, x, 1),(3, 2, x)|`

Taking (x + 4) common from R1, we get

Δ = `(x + 4) |(1, 1, 1),(1, x, 1),(3, 2, x)|`

Applying C2 → C2 – C1, C3 → C3 – C1 , we get

Δ = `(x + 4)|(1, 0, 0),(1, x - 1, 0),(3, -1, x - 3)|`

Expanding along R1,

∆ = (x + 4)[(x – 1)(x – 3) – 0].

Thus, ∆ = 0 implies x = – 4, 1, 3.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants - Solved Examples [पृष्ठ ७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 4 Determinants
Solved Examples | Q 7 | पृष्ठ ७१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If A  = `[(1,1,-2),(2,1,-3),(5,4,-9)]`, Find |A|


Let A be a square matrix of order 3 × 3, then | kA| is equal to

(A) k|A|

(B) k2 | A |

(C) k3 | A |

(D) 3k | A |


On expanding by first row, the value of the determinant of 3 × 3 square matrix
  \[A = \left[ a_{ij} \right]\text{ is }a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}\] , where [Cij] is the cofactor of aij in A. Write the expression for its value on expanding by second column.

 

A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.


A matrix A of order 3 × 3 is such that |A| = 4. Find the value of |2 A|.


If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\]  then write the value of k.


If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A–1) = (det A)k.


Which of the following is not correct?


Which of the following is not correct in a given determinant of A, where A = [aij]3×3.


Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0


Show that Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)` 


The determinant ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` is equal to ______.


Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.


Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.


If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.


If A is a matrix of order 3 × 3, then |3A| = ______.


The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`


`"A" = abs ((1/"a", "a"^2, "bc"),(1/"b", "b"^2, "ac"),(1/"c", "c"^2, "ab"))` is equal to ____________.


`abs ((1 + "a", "b", "c"),("a", 1 + "b", "c"),("a", "b", 1 + "c")) =` ____________


If A = `[(1,0,0),(2,"cos x","sin x"),(3,"sin x", "-cos x")],` then det. A is equal to ____________.


Find the minor of the element of the second row and third column in the following determinant `[(2,-3,5),(6,0,4),(1,5,-7)]`


If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.


Let A be a square matrix of order 2 x 2, then `abs("KA")` is equal to ____________.


The value of determinant `|(sin^2 13°, sin^2 77°, tan135°),(sin^2 77°, tan135°, sin^2 13°),(tan135°, sin^2 13°, sin^2 77°)|` is


Value of `|(2, 4),(-1, 2)|` is


In a third order matrix aij denotes the element of the ith row and the jth column.

A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`

Assertion: Matrix ‘A’ is not invertible.

Reason: Determinant A = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×