मराठी

Show that Δ = pqpqqqppq|xpqpxqqqx|=(x-p)(x2+px-2q2) - Mathematics

Advertisements
Advertisements

प्रश्न

Show that Δ = |xpqpxqqqx|=(x-p)(x2+px-2q2) 

बेरीज

उत्तर

Applying C1 → C1 – C2, we have

Δ = |x-ppqp-xxq0qx|

= (x-p)|1pq-1xq0qx|

= (x-p)|0p+x2p-1xq0qx|  Applying R1 → R1 – R2 

Expanding along C1, we have

Δ = (x-p)(px+x2-2q2)

= (x-p)(x2+px-2q2) 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants - Solved Examples [पृष्ठ ७०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 4 Determinants
Solved Examples | Q 4 | पृष्ठ ७०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Using the property of determinants and without expanding, prove that:

|xax+ayby+bzcz+c|=0


A matrix A of order 3 × 3 has determinant 5. What is the value of |3A|?

 

Let A = [aij] be a square matrix of order 3 × 3 and Cij denote cofactor of aij in A. If |A| = 5, write the value of a31 C31  +  a32 C32 a33 C33.


If A is a 3 × 3 matrix, |A|0 and |3A|=k|A|  then write the value of k.


Which of the following is not correct in a given determinant of A, where A = [aij]3×3.


If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .


Without expanding, show that Δ = |cosec2θcot2θ1cot2θcosec2θ-142402| = 0


If x = – 4 is a root of Δ = |x231x132x| = 0, then find the other two roots.


If x, y ∈ R, then the determinant ∆ = |cosx-sinx1sinxcosx1cos(x+y)-sin(x+y)0| lies in the interval.


If a + b + c ≠ 0 and |abcbcacab| 0, then prove that a = b = c.


If A = [2λ-3025113], then A–1 exists if ______.


If A is a matrix of order 3 × 3, then (A2)–1 = ______.


If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.


A=|1aa2bc1bb2ac1cc2ab| is equal to ____________.


|1+abca1+bcab1+c|= ____________


The value of the determinant |1002cos xsin x3sin xcos x| is ____________.


Find the minor of the element of the second row and third column in the following determinant [2-3560415-7]


If Δ=|538201123|, then write the minor of the element a23.


If abc0 and|1+a1111+b1111+c|=0,then 1a+1b+1c= ____________.


Let A be a square matrix of order 2 x 2, then |KA| is equal to ____________.


Find the 5th term of expansion of (x2+1x)10?


For positive numbers x, y, z, the numerical value of the determinant |1logxylogxzlogyx1logyzlogzxlogzy1| is


The value of determinant |sin213°sin277°tan135°sin277°tan135°sin213°tan135°sin213°sin277°| is


Value of |24-12| is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.