मराठी

The maximum value of |1111(1+sinθ)1111+cosθ| is 12 - Mathematics

Advertisements
Advertisements

प्रश्न

The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

Let Δ = `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|`

C1 → C1 – C2, C2 → C2 – C3

= `|(0, 0, 1),(-sintheta, sintheta, 1),(0, -costheta, 1 + costheta)|`

Expanding along C3

= `1|(-sintheta, sintheta),(0, -costheta)|`

= sin θ cos θ – 0

= sin θ cos θ

= `1/2 * 2 sin theta cos theta`

= `1/2 sin 2theta`

= `1/2 xx 1`  ......[Maximum value of sin 2θ = 1]

= `1/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants - Exercise [पृष्ठ ८५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 4 Determinants
Exercise | Q 58 | पृष्ठ ८५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If A  = `[(1,1,-2),(2,1,-3),(5,4,-9)]`, Find |A|


Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`


Using the property of determinants and without expanding, prove that:

`|(x, a, x+a),(y,b,y+b),(z,c, z+ c)| = 0`


Use properties of determinants to solve for x:

`|(x+a, b, c),(c, x+b, a),(a,b,x+c)| = 0` and `x != 0` 


Let A = [aij] be a square matrix of order 3 × 3 and Cij denote cofactor of aij in A. If |A| = 5, write the value of a31 C31  +  a32 C32 a33 C33.


A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.


If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A–1) = (det A)k.


Which of the following is not correct?


If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .


Solve the following system of linear equations using matrix method: 
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2


Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0


Show that Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)` 


The determinant ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` is equal to ______.


The value of the determinant ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______.


The determinant ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|` is independent of x only.


If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.


If A is a matrix of order 3 × 3, then |3A| = ______.


If A is a matrix of order 3 × 3, then (A2)–1 = ______.


`|(0, xyz, x - z),(y - x, 0, y  z),(z - x, z - y, 0)|` = ______.


If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.


`abs ((1 + "a", "b", "c"),("a", 1 + "b", "c"),("a", "b", 1 + "c")) =` ____________


The value of the determinant `abs ((1,0,0),(2, "cos x", "sin x"),(3, "sin x", "cos x"))` is ____________.


If A = `[(1,0,0),(2,"cos x","sin x"),(3,"sin x", "-cos x")],` then det. A is equal to ____________.


If `"abc" ne 0  "and" abs ((1 + "a", 1, 1),(1, 1 + "b", 1),(1,1,1 + "c")) = 0, "then"  1/"a" + 1/"b" + 1/"c" =` ____________.


In a third order matrix aij denotes the element of the ith row and the jth column.

A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`

Assertion: Matrix ‘A’ is not invertible.

Reason: Determinant A = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×