English

The maximum value of |1111(1+sinθ)1111+cosθ| is 12 - Mathematics

Advertisements
Advertisements

Question

The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`

Options

  • True

  • False

MCQ
True or False

Solution

This statement is True.

Explanation:

Let Δ = `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|`

C1 → C1 – C2, C2 → C2 – C3

= `|(0, 0, 1),(-sintheta, sintheta, 1),(0, -costheta, 1 + costheta)|`

Expanding along C3

= `1|(-sintheta, sintheta),(0, -costheta)|`

= sin θ cos θ – 0

= sin θ cos θ

= `1/2 * 2 sin theta cos theta`

= `1/2 sin 2theta`

= `1/2 xx 1`  ......[Maximum value of sin 2θ = 1]

= `1/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise [Page 85]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 4 Determinants
Exercise | Q 58 | Page 85

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If A  = `[(1,1,-2),(2,1,-3),(5,4,-9)]`, Find |A|


Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`


Find values of x, if `|[2,3],[4,5]|=|[x,3],[2x,5]|`


Using the property of determinants and without expanding, prove that:

`|(x, a, x+a),(y,b,y+b),(z,c, z+ c)| = 0`


Let A be a square matrix of order 3 × 3, then | kA| is equal to

(A) k|A|

(B) k2 | A |

(C) k3 | A |

(D) 3k | A |


Without expanding at any stage, find the value of:

`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`


A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.


A matrix A of order 3 × 3 is such that |A| = 4. Find the value of |2 A|.


If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\]  then write the value of k.


Which of the following is not correct?


Solve the following system of linear equations using matrix method: 
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2


Using matrices, solve the following system of linear equations :

x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11


Show that Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)` 


If a + b + c ≠ 0 and `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` 0, then prove that a = b = c.


Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.


If f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, then ______.


If x, y, z are all different from zero and `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, then value of x–1 + y–1 + z–1 is ______.


There are two values of a which makes determinant, ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, then sum of these number is ______.


If A is a matrix of order 3 × 3, then (A2)–1 = ______.


If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.


For positive numbers x, y, z, the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` is


The value of determinant `|(sin^2 13°, sin^2 77°, tan135°),(sin^2 77°, tan135°, sin^2 13°),(tan135°, sin^2 13°, sin^2 77°)|` is


Value of `|(2, 4),(-1, 2)|` is


In a third order matrix aij denotes the element of the ith row and the jth column.

A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`

Assertion: Matrix ‘A’ is not invertible.

Reason: Determinant A = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×