English

Which of the Following is Not Correct? (A) | a | = | a T | , Where a = [ a I J ] 3 × 3 (B) | K a | = | K 3 | , Where a = [ a I J ] 3 × 3 (C) If a is a Skew-symmetric Matrix of Odd Order, Then - Mathematics

Advertisements
Advertisements

Question

Which of the following is not correct?

Options

  • \[|A| = | A^T |,\text{ where }A = \left[ a_{ij} \right]_{3 \times 3}\] 

  • \[|kA| = | k^3 |,\text{ where }A = \left[ a_{ij} \right]_{3 \times 3}\]

  • If A is a skew-symmetric matrix of odd order, then |A| = 0

  • \[\begin{vmatrix}a + b & c + d \\ e + f & g + h\end{vmatrix} = \begin{vmatrix}a & c \\ e & g\end{vmatrix} + \begin{vmatrix}b & d \\ f & h\end{vmatrix}\]

MCQ

Solution

(d) \[\begin{vmatrix}a + b & c + d \\ e + f & g + h\end{vmatrix} = \begin{vmatrix}a & c \\ e & g\end{vmatrix} + \begin{vmatrix}b & d \\ f & h\end{vmatrix}\]

\[\begin{vmatrix} a + b & c + d\\e + f & g + h \end{vmatrix} = \begin{vmatrix} a + b & c\\e + f & g \end{vmatrix} + \begin{vmatrix} a + b & d\\e + f & h \end{vmatrix}\]
\[ = \begin{vmatrix} a & c\\e & g \end{vmatrix} + \begin{vmatrix} b & c\\f & g \end{vmatrix} + \begin{vmatrix} a & d \\e & h \end{vmatrix} + \begin{vmatrix} b & d\\f & h \end{vmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.7 [Page 93]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.7 | Q 2 | Page 93

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`


Using the property of determinants and without expanding, prove that:

`|(x, a, x+a),(y,b,y+b),(z,c, z+ c)| = 0`


Without expanding at any stage, find the value of:

`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`


Use properties of determinants to solve for x:

`|(x+a, b, c),(c, x+b, a),(a,b,x+c)| = 0` and `x != 0` 


On expanding by first row, the value of the determinant of 3 × 3 square matrix
  \[A = \left[ a_{ij} \right]\text{ is }a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}\] , where [Cij] is the cofactor of aij in A. Write the expression for its value on expanding by second column.

 

A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.


A matrix A of order 3 × 3 is such that |A| = 4. Find the value of |2 A|.


Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0


Show that Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)` 


If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval.


The determinant ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|` is independent of x only.


If x + y + z = 0, prove that `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`


If f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, then ______.


If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.


If A is invertible matrix of order 3 × 3, then |A–1| ______.


If A is a matrix of order 3 × 3, then (A2)–1 = ______.


`|(0, xyz, x - z),(y - x, 0, y  z),(z - x, z - y, 0)|` = ______.


If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = ______.


The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`


`"A" = abs ((1/"a", "a"^2, "bc"),(1/"b", "b"^2, "ac"),(1/"c", "c"^2, "ab"))` is equal to ____________.


If A, B, and C be the three square matrices such that A = B + C, then Det A is equal to


Find the minor of the element of the second row and third column in the following determinant `[(2,-3,5),(6,0,4),(1,5,-7)]`


If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.


If `"abc" ne 0  "and" abs ((1 + "a", 1, 1),(1, 1 + "b", 1),(1,1,1 + "c")) = 0, "then"  1/"a" + 1/"b" + 1/"c" =` ____________.


Find the 5th term of expansion of `(x^2 + 1/x)^10`?


For positive numbers x, y, z the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 3, log_y z),(log_z x, log_z y, 5)|` is


Value of `|(2, 4),(-1, 2)|` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×