हिंदी

Which of the Following is Not Correct? (A) | a | = | a T | , Where a = [ a I J ] 3 × 3 (B) | K a | = | K 3 | , Where a = [ a I J ] 3 × 3 (C) If a is a Skew-symmetric Matrix of Odd Order, Then - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following is not correct?

विकल्प

  • \[|A| = | A^T |,\text{ where }A = \left[ a_{ij} \right]_{3 \times 3}\] 

  • \[|kA| = | k^3 |,\text{ where }A = \left[ a_{ij} \right]_{3 \times 3}\]

  • If A is a skew-symmetric matrix of odd order, then |A| = 0

  • \[\begin{vmatrix}a + b & c + d \\ e + f & g + h\end{vmatrix} = \begin{vmatrix}a & c \\ e & g\end{vmatrix} + \begin{vmatrix}b & d \\ f & h\end{vmatrix}\]

MCQ

उत्तर

(d) \[\begin{vmatrix}a + b & c + d \\ e + f & g + h\end{vmatrix} = \begin{vmatrix}a & c \\ e & g\end{vmatrix} + \begin{vmatrix}b & d \\ f & h\end{vmatrix}\]

\[\begin{vmatrix} a + b & c + d\\e + f & g + h \end{vmatrix} = \begin{vmatrix} a + b & c\\e + f & g \end{vmatrix} + \begin{vmatrix} a + b & d\\e + f & h \end{vmatrix}\]
\[ = \begin{vmatrix} a & c\\e & g \end{vmatrix} + \begin{vmatrix} b & c\\f & g \end{vmatrix} + \begin{vmatrix} a & d \\e & h \end{vmatrix} + \begin{vmatrix} b & d\\f & h \end{vmatrix}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.7 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.7 | Q 2 | पृष्ठ ९३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If A  = `[(1,1,-2),(2,1,-3),(5,4,-9)]`, Find |A|


Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`


Find values of x, if `|[2,3],[4,5]|=|[x,3],[2x,5]|`


Let A be a square matrix of order 3 × 3, then | kA| is equal to

(A) k|A|

(B) k2 | A |

(C) k3 | A |

(D) 3k | A |


Without expanding at any stage, find the value of:

`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`


Use properties of determinants to solve for x:

`|(x+a, b, c),(c, x+b, a),(a,b,x+c)| = 0` and `x != 0` 


On expanding by first row, the value of the determinant of 3 × 3 square matrix
  \[A = \left[ a_{ij} \right]\text{ is }a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}\] , where [Cij] is the cofactor of aij in A. Write the expression for its value on expanding by second column.

 

A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.


If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .


Solve the following system of linear equations using matrix method: 
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2


Using matrices, solve the following system of linear equations :

x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11


If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval.


The determinant ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|` is independent of x only.


If a + b + c ≠ 0 and `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` 0, then prove that a = b = c.


Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.


Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.


If f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, then ______.


If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.


If x, y, z are all different from zero and `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, then value of x–1 + y–1 + z–1 is ______.


There are two values of a which makes determinant, ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, then sum of these number is ______.


If A is invertible matrix of order 3 × 3, then |A–1| ______.


If A is a matrix of order 3 × 3, then (A2)–1 = ______.


If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = ______.


The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`


`abs ((1 + "a", "b", "c"),("a", 1 + "b", "c"),("a", "b", 1 + "c")) =` ____________


If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.


For positive numbers x, y, z the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 3, log_y z),(log_z x, log_z y, 5)|` is


For positive numbers x, y, z, the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` is


The value of determinant `|(sin^2 13°, sin^2 77°, tan135°),(sin^2 77°, tan135°, sin^2 13°),(tan135°, sin^2 13°, sin^2 77°)|` is


Value of `|(2, 4),(-1, 2)|` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×