हिंदी

If A = [2λ-3025113], then A–1 exists if ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.

विकल्प

  • λ = 2

  • λ ≠ 2

  • λ ≠ – 2

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if none of these.

Explanation:

We have, A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`

⇒ |A| = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`

Expanding along R1 = `2|(2, 5),(1, 3)|  lambda |(0, 5),(1, 3)| - 3|(0, 2),(1, 1)|`

= 2(6 – 5) – λ(0 – 5) – 3(0 – 2)

= 2 + 5λ + 6

= 8 + 5λ

If A–1 exists then |A| ≠ 0

∴ 8 + 5λ ≠ 0

So λ ≠ `(-8)/5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise [पृष्ठ ८२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise | Q 33 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`


Let A be a square matrix of order 3 × 3, then | kA| is equal to

(A) k|A|

(B) k2 | A |

(C) k3 | A |

(D) 3k | A |


Without expanding at any stage, find the value of:

`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`


Use properties of determinants to solve for x:

`|(x+a, b, c),(c, x+b, a),(a,b,x+c)| = 0` and `x != 0` 


A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.


If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\]  then write the value of k.


If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A–1) = (det A)k.


Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0


If Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, then show that ∆ is equal to zero.


If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval.


If x + y + z = 0, prove that `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`


If f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, then ______.


There are two values of a which makes determinant, ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, then sum of these number is ______.


If A is a matrix of order 3 × 3, then |3A| = ______.


If A is invertible matrix of order 3 × 3, then |A–1| ______.


If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = ______.


If A, B, and C be the three square matrices such that A = B + C, then Det A is equal to


The value of the determinant `abs ((1,0,0),(2, "cos x", "sin x"),(3, "sin x", "cos x"))` is ____________.


Find the minor of the element of the second row and third column in the following determinant `[(2,-3,5),(6,0,4),(1,5,-7)]`


If `"abc" ne 0  "and" abs ((1 + "a", 1, 1),(1, 1 + "b", 1),(1,1,1 + "c")) = 0, "then"  1/"a" + 1/"b" + 1/"c" =` ____________.


Let A be a square matrix of order 2 x 2, then `abs("KA")` is equal to ____________.


Find the 5th term of expansion of `(x^2 + 1/x)^10`?


For positive numbers x, y, z the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 3, log_y z),(log_z x, log_z y, 5)|` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×