हिंदी

If a is a 3 × 3 Invertible Matrix, Then What Will Be the Value of K If Det(A–1) = (Det A)K. - Mathematics

Advertisements
Advertisements

प्रश्न

If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A–1) = (det A)k.

उत्तर

As we know that
 \[A^{- 1} = \frac{Adj A}{\left| A \right|}\]
\[ \therefore \left| A^{- 1} \right| = \frac{\left| Adj A \right|}{\left| A \right|}\]
\[ = \frac{\left| A \right|^{3 - 1}}{\left| A \right|} \left[ \because\text{ If A is a non singular matrix of order n, then }\left| adj\left( A \right) \right| = \left| A \right|^{n - 1} \right]\]
\[= \frac{\left| A \right|^2}{\left| A \right|}\]
\[ = \left| A \right|\]
\[\text{ As we are given that }\left| A^{- 1} \right| = \left| A \right|^k\]
\[\therefore k = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.6 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.6 | Q 56 | पृष्ठ ९५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`


Find values of x, if `|[2,3],[4,5]|=|[x,3],[2x,5]|`


Using the property of determinants and without expanding, prove that:

`|(x, a, x+a),(y,b,y+b),(z,c, z+ c)| = 0`


Without expanding at any stage, find the value of:

`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`


Use properties of determinants to solve for x:

`|(x+a, b, c),(c, x+b, a),(a,b,x+c)| = 0` and `x != 0` 


A matrix A of order 3 × 3 has determinant 5. What is the value of |3A|?

 

On expanding by first row, the value of the determinant of 3 × 3 square matrix
  \[A = \left[ a_{ij} \right]\text{ is }a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}\] , where [Cij] is the cofactor of aij in A. Write the expression for its value on expanding by second column.

 

Solve the following system of linear equations using matrix method: 
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2


Using matrices, solve the following system of linear equations :

x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11


Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0


If x = – 4 is a root of Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, then find the other two roots.


If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval.


If a1, a2, a3, ..., ar are in G.P., then prove that the determinant `|("a"_("r" + 1), "a"_("r" + 5), "a"_("r" + 9)),("a"_("r" + 7), "a"_("r" + 11), "a"_("r" + 15)),("a"_("r" + 11), "a"_("r" + 17), "a"_("r" + 21))|` is independent of r.


If x + y + z = 0, prove that `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`


Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.


If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.


If x, y, z are all different from zero and `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, then value of x–1 + y–1 + z–1 is ______.


If A is a matrix of order 3 × 3, then (A2)–1 = ______.


`|(0, xyz, x - z),(y - x, 0, y  z),(z - x, z - y, 0)|` = ______.


If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = ______.


`"A" = abs ((1/"a", "a"^2, "bc"),(1/"b", "b"^2, "ac"),(1/"c", "c"^2, "ab"))` is equal to ____________.


If A, B, and C be the three square matrices such that A = B + C, then Det A is equal to


The value of the determinant `abs ((1,0,0),(2, "cos x", "sin x"),(3, "sin x", "cos x"))` is ____________.


Find the minor of the element of the second row and third column in the following determinant `[(2,-3,5),(6,0,4),(1,5,-7)]`


If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.


For positive numbers x, y, z the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 3, log_y z),(log_z x, log_z y, 5)|` is


The value of determinant `|(sin^2 13°, sin^2 77°, tan135°),(sin^2 77°, tan135°, sin^2 13°),(tan135°, sin^2 13°, sin^2 77°)|` is


Value of `|(2, 4),(-1, 2)|` is


In a third order matrix aij denotes the element of the ith row and the jth column.

A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`

Assertion: Matrix ‘A’ is not invertible.

Reason: Determinant A = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×