हिंदी

If a1, a2, a3, ..., ar are in G.P., then prove that the determinant ararararararararar|ar+1ar+5ar+9ar+7ar+11ar+15ar+11ar+17ar+21| is independent of r. - Mathematics

Advertisements
Advertisements

प्रश्न

If a1, a2, a3, ..., ar are in G.P., then prove that the determinant `|("a"_("r" + 1), "a"_("r" + 5), "a"_("r" + 9)),("a"_("r" + 7), "a"_("r" + 11), "a"_("r" + 15)),("a"_("r" + 11), "a"_("r" + 17), "a"_("r" + 21))|` is independent of r.

योग

उत्तर

We know that, `"a"_("r" + 1) = "AR"^(("r + 1) - 1)` = ARr;

Where ar = rth term of G.P.

A = First term of G.P.

And R = common ratio of G.P.

∴ `|("a"_("r" + 1), "a"_("r" + 5), "a"_("r" + 9)),("a"_("r" + 7), "a"_("r" + 11), "a"_("r" + 15)),("a"_("r" + 11), "a"_("r" + 17), "a"_("r" + 21))| = |("AR"^"r", "AR"^("r" + 4), "AR"^("r" + 8)),("AR"^("r" + 6), "AR"^("r" + 10), "AR"^("r" + 14)),("AR"^("r" + 10), "AR"^("r" + 16), "AR"^("r" + 20))|`

[Taking ARr, ARr+6 and ARr+10 common from R1, R2 and R3, respectively]

= `"AR"^"r" * "AR"^("r" + 6) * "AR"^("r" + 10) |(1, "AR"^4, "AR"^8),(1, "AR"^4, "AR"^8),(1, "AR"^6, "AR"^10)|`

= 0  ....[As R1 and R2 are identical]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise [पृष्ठ ७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise | Q 14 | पृष्ठ ७८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If A  = `[(1,1,-2),(2,1,-3),(5,4,-9)]`, Find |A|


Let A be a square matrix of order 3 × 3, then | kA| is equal to

(A) k|A|

(B) k2 | A |

(C) k3 | A |

(D) 3k | A |


A matrix A of order 3 × 3 has determinant 5. What is the value of |3A|?

 

On expanding by first row, the value of the determinant of 3 × 3 square matrix
  \[A = \left[ a_{ij} \right]\text{ is }a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}\] , where [Cij] is the cofactor of aij in A. Write the expression for its value on expanding by second column.

 

If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A–1) = (det A)k.


Which of the following is not correct?


If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .


Solve the following system of linear equations using matrix method: 
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2


Using matrices, solve the following system of linear equations :

x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11


Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0


If Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, then show that ∆ is equal to zero.


The determinant ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` is equal to ______.


Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.


If A is invertible matrix of order 3 × 3, then |A–1| ______.


If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.


The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`


`"A" = abs ((1/"a", "a"^2, "bc"),(1/"b", "b"^2, "ac"),(1/"c", "c"^2, "ab"))` is equal to ____________.


The value of the determinant `abs ((1,0,0),(2, "cos x", "sin x"),(3, "sin x", "cos x"))` is ____________.


If A = `[(1,0,0),(2,"cos x","sin x"),(3,"sin x", "-cos x")],` then det. A is equal to ____________.


Find the minor of the element of the second row and third column in the following determinant `[(2,-3,5),(6,0,4),(1,5,-7)]`


If `"abc" ne 0  "and" abs ((1 + "a", 1, 1),(1, 1 + "b", 1),(1,1,1 + "c")) = 0, "then"  1/"a" + 1/"b" + 1/"c" =` ____________.


For positive numbers x, y, z the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 3, log_y z),(log_z x, log_z y, 5)|` is


For positive numbers x, y, z, the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` is


Value of `|(2, 4),(-1, 2)|` is


In a third order matrix aij denotes the element of the ith row and the jth column.

A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`

Assertion: Matrix ‘A’ is not invertible.

Reason: Determinant A = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×