Advertisements
Advertisements
प्रश्न
Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.
उत्तर
Δ = `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|`
[Applying C1 → C1 – C2 and C2 → C2 – C3]
Δ = `|("bc" - "a"^2 - "ca" + "b"^2,"ca" - "b"^2 - "ab" + "c"^2, "ab" - "c"^2),("ca" - "b"^2 - "ab" + "c"^2, "ab" - "c"^2 - "bc" + "a"^2, "bc" - "a"^2),("ab" - "c"^2 - "bc" + "a"^2, "bc" - "a"^2 - "ca" + "b"^2, "ca" - "b"^2)|`
= `|(("b" - "a")("a" + "b" + "c"), ("c" - "b")("a" + "b" + "c"), "ab" - "c"^2),(("c" - "b")("a" + "b" + "c"), ("a" - "c")("a" + "b" + "c"), "bc" - "a"^2),(("a" - "c")("a" + "b" + "c"), ("b" - "a")("a" + "b" + "c"), "ca" - "b"^2)|`
[Taking (a + b + c) common from C1 and C2 each]
Δ = `("a" + "b" + "c")^2 |("b" - "a", "c" - "b", "ab" - "c"^2),("c" - "b", "a" - "c", "bc" - "a"^2),("a" - "c", "b" - "a", "ca" - "b"^2)|`
[Applying R1 → R1 + R2 + R3]
Δ = `("a" + "b" + "c")^2 |(0, 0, "ab" + "bc" + "ca" - ("a"^2 + "b"^2 + "c"^2)),("c" - "b", "a" - "c", "bc" - "a"^2),("a" - "c", "b" - "a", "ca" - "b"^2)|`
[Expanding along R1]
Δ = `("a" + "b" + "c")^2 ["ab" + "bc" + "ca" - ("a"^2 + "b"^2 + "c"^2)][("c" - "b")("b" - "a") - ("a" - "c")^2]`
= `("a" + "b" + "c")^2 ("ab" + "bc" + "ca" - "a"^2 - "b"^2 - "c"^2) xx ("bc" - "ac" - "b"^2 + "ab" - "a"^2 - "c"^2 + 2"ac")`
= (a + b + c)[(a + b + c)(a2 + b2 + c2 – ab – bc – ca)2]
Hence, given determinant is divisible by (a + b + c) and quotient is (a + b + c)(a2 + b2 + c2 – ab – bc – ca)2
APPEARS IN
संबंधित प्रश्न
Find values of x, if `|[2,3],[4,5]|=|[x,3],[2x,5]|`
Using the property of determinants and without expanding, prove that:
`|(x, a, x+a),(y,b,y+b),(z,c, z+ c)| = 0`
Let A be a square matrix of order 3 × 3, then | kA| is equal to
(A) k|A|
(B) k2 | A |
(C) k3 | A |
(D) 3k | A |
Without expanding at any stage, find the value of:
`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`
Use properties of determinants to solve for x:
`|(x+a, b, c),(c, x+b, a),(a,b,x+c)| = 0` and `x != 0`
If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\] then write the value of k.
Which of the following is not correct?
If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .
Using matrices, solve the following system of linear equations :
x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11
If Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, then show that ∆ is equal to zero.
If x = – 4 is a root of Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, then find the other two roots.
The value of the determinant ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______.
If a + b + c ≠ 0 and `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` 0, then prove that a = b = c.
If x + y + z = 0, prove that `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`
Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = ______.
`"A" = abs ((1/"a", "a"^2, "bc"),(1/"b", "b"^2, "ac"),(1/"c", "c"^2, "ab"))` is equal to ____________.
`abs ((1 + "a", "b", "c"),("a", 1 + "b", "c"),("a", "b", 1 + "c")) =` ____________
If A = `[(1,0,0),(2,"cos x","sin x"),(3,"sin x", "-cos x")],` then det. A is equal to ____________.
Find the minor of the element of the second row and third column in the following determinant `[(2,-3,5),(6,0,4),(1,5,-7)]`
If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.
If `"abc" ne 0 "and" abs ((1 + "a", 1, 1),(1, 1 + "b", 1),(1,1,1 + "c")) = 0, "then" 1/"a" + 1/"b" + 1/"c" =` ____________.
Let A be a square matrix of order 2 x 2, then `abs("KA")` is equal to ____________.
Value of `|(2, 4),(-1, 2)|` is
In a third order matrix aij denotes the element of the ith row and the jth column.
A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`
Assertion: Matrix ‘A’ is not invertible.
Reason: Determinant A = 0
Which of the following is correct?