हिंदी

If x = – 4 is a root of Δ = |x231x132x| = 0, then find the other two roots. - Mathematics

Advertisements
Advertisements

प्रश्न

If x = – 4 is a root of Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, then find the other two roots.

योग

उत्तर

Applying R1 → (R1 + R2 + R3), we get

`|(x + 4, x + 4, x + 4),(1, x, 1),(3, 2, x)|`

Taking (x + 4) common from R1, we get

Δ = `(x + 4) |(1, 1, 1),(1, x, 1),(3, 2, x)|`

Applying C2 → C2 – C1, C3 → C3 – C1 , we get

Δ = `(x + 4)|(1, 0, 0),(1, x - 1, 0),(3, -1, x - 3)|`

Expanding along R1,

∆ = (x + 4)[(x – 1)(x – 3) – 0].

Thus, ∆ = 0 implies x = – 4, 1, 3.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Solved Examples [पृष्ठ ७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 4 Determinants
Solved Examples | Q 7 | पृष्ठ ७१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If A  = `[(1,1,-2),(2,1,-3),(5,4,-9)]`, Find |A|


A matrix A of order 3 × 3 has determinant 5. What is the value of |3A|?

 

On expanding by first row, the value of the determinant of 3 × 3 square matrix
  \[A = \left[ a_{ij} \right]\text{ is }a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}\] , where [Cij] is the cofactor of aij in A. Write the expression for its value on expanding by second column.

 

Let A = [aij] be a square matrix of order 3 × 3 and Cij denote cofactor of aij in A. If |A| = 5, write the value of a31 C31  +  a32 C32 a33 C33.


A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.


Which of the following is not correct?


If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .


Solve the following system of linear equations using matrix method: 
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2


Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0


The determinant ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|` is independent of x only.


If a1, a2, a3, ..., ar are in G.P., then prove that the determinant `|("a"_("r" + 1), "a"_("r" + 5), "a"_("r" + 9)),("a"_("r" + 7), "a"_("r" + 11), "a"_("r" + 15)),("a"_("r" + 11), "a"_("r" + 17), "a"_("r" + 21))|` is independent of r.


If x + y + z = 0, prove that `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`


Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.


There are two values of a which makes determinant, ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, then sum of these number is ______.


If A is a matrix of order 3 × 3, then |3A| = ______.


If A is a matrix of order 3 × 3, then (A2)–1 = ______.


`|(0, xyz, x - z),(y - x, 0, y  z),(z - x, z - y, 0)|` = ______.


If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = ______.


If A = `[(1,0,0),(2,"cos x","sin x"),(3,"sin x", "-cos x")],` then det. A is equal to ____________.


Find the minor of the element of the second row and third column in the following determinant `[(2,-3,5),(6,0,4),(1,5,-7)]`


If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.


If `"abc" ne 0  "and" abs ((1 + "a", 1, 1),(1, 1 + "b", 1),(1,1,1 + "c")) = 0, "then"  1/"a" + 1/"b" + 1/"c" =` ____________.


Find the 5th term of expansion of `(x^2 + 1/x)^10`?


For positive numbers x, y, z, the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×