Advertisements
Advertisements
प्रश्न
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = ______.
उत्तर
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = (y – z)(z – x)(y – x + xyz).
Explanation:
Let Δ = `|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|`
C1 → C1 – C3
= `|(z - x, xyz, x - z),(z - x, 0, y - z),(z - x, z - y, 0)|`
Taking (z – x) common from C1
= `(z - x) |(1, xyz, x - z),(1, 0, y - z),(1, z - y, 0)|`
R1 → R1 – R2, R2 → R2 – R3
= `(z - x) |(0, xyz,y),(0, y - x, y - z),(1, z - y, 0)|`
Taking (y – z) common from R2
= `(z - x)(y - z) |(0, xyz, x - y),(0, 1, 1),(1, z - y, 0)|`
Expanding along C1
= `(z - x)(y - z) [1|(xyz, x - y),(1, 1)|]`
= (z – x)(y – z)(xyz – x + y)
= (y – z)(z – x)(y – x + xyz)
APPEARS IN
संबंधित प्रश्न
Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`
Using the property of determinants and without expanding, prove that:
`|(x, a, x+a),(y,b,y+b),(z,c, z+ c)| = 0`
Use properties of determinants to solve for x:
`|(x+a, b, c),(c, x+b, a),(a,b,x+c)| = 0` and `x != 0`
A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.
A matrix A of order 3 × 3 is such that |A| = 4. Find the value of |2 A|.
If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\] then write the value of k.
If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .
Solve the following system of linear equations using matrix method:
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2
Show that Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)`
If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval.
The determinant ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|` is independent of x only.
If a + b + c ≠ 0 and `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` 0, then prove that a = b = c.
Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.
Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.
If f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, then ______.
If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.
If x, y, z are all different from zero and `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, then value of x–1 + y–1 + z–1 is ______.
If A is a matrix of order 3 × 3, then |3A| = ______.
If A is invertible matrix of order 3 × 3, then |A–1| ______.
If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.
`"A" = abs ((1/"a", "a"^2, "bc"),(1/"b", "b"^2, "ac"),(1/"c", "c"^2, "ab"))` is equal to ____________.
`abs ((1 + "a", "b", "c"),("a", 1 + "b", "c"),("a", "b", 1 + "c")) =` ____________
If A = `[(1,0,0),(2,"cos x","sin x"),(3,"sin x", "-cos x")],` then det. A is equal to ____________.
For positive numbers x, y, z the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 3, log_y z),(log_z x, log_z y, 5)|` is
Value of `|(2, 4),(-1, 2)|` is