Advertisements
Advertisements
प्रश्न
If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval.
विकल्प
`[-sqrt(2), sqrt(2)]`
[–1, 1]
`[-sqrt(2), 1]`
`[-1, -sqrt(2)]`
उत्तर
If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval `[-sqrt(2), sqrt(2)]`.
Explanation:
Indeed applying R3 → R3 – cosyR1 + sinyR2, we get
∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(0, 0, siny - cosy)|`
Expanding along R3, we have
∆ = (siny – cosy) (cos2x + sin2x)
= (siny – cosy)
= `sqrt(2)[1/sqrt(2) siny - 1/sqrt(2) cosy]`
= `sqrt(2)[cos pi/4 sin y - sin pi/4 cos y]`
= `sqrt(2) sin(y - pi/4)`
Hence `-sqrt(2) ≤ ∆ ≤ sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Find values of x, if `|[2,3],[4,5]|=|[x,3],[2x,5]|`
Using the property of determinants and without expanding, prove that:
`|(x, a, x+a),(y,b,y+b),(z,c, z+ c)| = 0`
A matrix A of order 3 × 3 has determinant 5. What is the value of |3A|?
Let A = [aij] be a square matrix of order 3 × 3 and Cij denote cofactor of aij in A. If |A| = 5, write the value of a31 C31 + a32 C32 a33 C33.
A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.
A matrix A of order 3 × 3 is such that |A| = 4. Find the value of |2 A|.
Which of the following is not correct?
Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0
If Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, then show that ∆ is equal to zero.
The determinant ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` is equal to ______.
The determinant ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|` is independent of x only.
If f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, then ______.
If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.
There are two values of a which makes determinant, ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, then sum of these number is ______.
If A is a matrix of order 3 × 3, then |3A| = ______.
If A is a matrix of order 3 × 3, then (A2)–1 = ______.
If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.
The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`
`"A" = abs ((1/"a", "a"^2, "bc"),(1/"b", "b"^2, "ac"),(1/"c", "c"^2, "ab"))` is equal to ____________.
`abs ((1 + "a", "b", "c"),("a", 1 + "b", "c"),("a", "b", 1 + "c")) =` ____________
If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.
If `"abc" ne 0 "and" abs ((1 + "a", 1, 1),(1, 1 + "b", 1),(1,1,1 + "c")) = 0, "then" 1/"a" + 1/"b" + 1/"c" =` ____________.
For positive numbers x, y, z, the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` is
Value of `|(2, 4),(-1, 2)|` is
In a third order matrix aij denotes the element of the ith row and the jth column.
A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`
Assertion: Matrix ‘A’ is not invertible.
Reason: Determinant A = 0
Which of the following is correct?