Advertisements
Advertisements
प्रश्न
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = ______.
उत्तर
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = (y – z)(z – x)(y – x + xyz).
Explanation:
Let Δ = `|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|`
C1 → C1 – C3
= `|(z - x, xyz, x - z),(z - x, 0, y - z),(z - x, z - y, 0)|`
Taking (z – x) common from C1
= `(z - x) |(1, xyz, x - z),(1, 0, y - z),(1, z - y, 0)|`
R1 → R1 – R2, R2 → R2 – R3
= `(z - x) |(0, xyz,y),(0, y - x, y - z),(1, z - y, 0)|`
Taking (y – z) common from R2
= `(z - x)(y - z) |(0, xyz, x - y),(0, 1, 1),(1, z - y, 0)|`
Expanding along C1
= `(z - x)(y - z) [1|(xyz, x - y),(1, 1)|]`
= (z – x)(y – z)(xyz – x + y)
= (y – z)(z – x)(y – x + xyz)
APPEARS IN
संबंधित प्रश्न
Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`
Using the property of determinants and without expanding, prove that:
`|(x, a, x+a),(y,b,y+b),(z,c, z+ c)| = 0`
A matrix A of order 3 × 3 has determinant 5. What is the value of |3A|?
Let A = [aij] be a square matrix of order 3 × 3 and Cij denote cofactor of aij in A. If |A| = 5, write the value of a31 C31 + a32 C32 a33 C33.
A matrix A of order 3 × 3 is such that |A| = 4. Find the value of |2 A|.
If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\] then write the value of k.
Which of the following is not correct in a given determinant of A, where A = [aij]3×3.
If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .
Solve the following system of linear equations using matrix method:
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2
Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0
If Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, then show that ∆ is equal to zero.
If x = – 4 is a root of Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, then find the other two roots.
If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval.
The value of the determinant ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______.
If a1, a2, a3, ..., ar are in G.P., then prove that the determinant `|("a"_("r" + 1), "a"_("r" + 5), "a"_("r" + 9)),("a"_("r" + 7), "a"_("r" + 11), "a"_("r" + 15)),("a"_("r" + 11), "a"_("r" + 17), "a"_("r" + 21))|` is independent of r.
If a + b + c ≠ 0 and `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` 0, then prove that a = b = c.
Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.
If x + y + z = 0, prove that `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`
If f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, then ______.
If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.
There are two values of a which makes determinant, ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, then sum of these number is ______.
If A is a matrix of order 3 × 3, then |3A| = ______.
The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`
If A, B, and C be the three square matrices such that A = B + C, then Det A is equal to
If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.