Advertisements
Advertisements
Question
If x = – 4 is a root of Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, then find the other two roots.
Solution
Applying R1 → (R1 + R2 + R3), we get
`|(x + 4, x + 4, x + 4),(1, x, 1),(3, 2, x)|`
Taking (x + 4) common from R1, we get
Δ = `(x + 4) |(1, 1, 1),(1, x, 1),(3, 2, x)|`
Applying C2 → C2 – C1, C3 → C3 – C1 , we get
Δ = `(x + 4)|(1, 0, 0),(1, x - 1, 0),(3, -1, x - 3)|`
Expanding along R1,
∆ = (x + 4)[(x – 1)(x – 3) – 0].
Thus, ∆ = 0 implies x = – 4, 1, 3.
APPEARS IN
RELATED QUESTIONS
Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`
Find values of x, if `|[2,3],[4,5]|=|[x,3],[2x,5]|`
Without expanding at any stage, find the value of:
`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`
A matrix A of order 3 × 3 has determinant 5. What is the value of |3A|?
On expanding by first row, the value of the determinant of 3 × 3 square matrix
\[A = \left[ a_{ij} \right]\text{ is }a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}\] , where [Cij] is the cofactor of aij in A. Write the expression for its value on expanding by second column.
A matrix A of order 3 × 3 is such that |A| = 4. Find the value of |2 A|.
If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\] then write the value of k.
If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A–1) = (det A)k.
Which of the following is not correct?
If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .
Solve the following system of linear equations using matrix method:
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2
Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0
The determinant ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` is equal to ______.
The determinant ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|` is independent of x only.
If a1, a2, a3, ..., ar are in G.P., then prove that the determinant `|("a"_("r" + 1), "a"_("r" + 5), "a"_("r" + 9)),("a"_("r" + 7), "a"_("r" + 11), "a"_("r" + 15)),("a"_("r" + 11), "a"_("r" + 17), "a"_("r" + 21))|` is independent of r.
Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.
If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.
If A is invertible matrix of order 3 × 3, then |A–1| ______.
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = ______.
If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = ______.
`abs ((1 + "a", "b", "c"),("a", 1 + "b", "c"),("a", "b", 1 + "c")) =` ____________
The value of the determinant `abs ((1,0,0),(2, "cos x", "sin x"),(3, "sin x", "cos x"))` is ____________.
If A = `[(1,0,0),(2,"cos x","sin x"),(3,"sin x", "-cos x")],` then det. A is equal to ____________.
If `"abc" ne 0 "and" abs ((1 + "a", 1, 1),(1, 1 + "b", 1),(1,1,1 + "c")) = 0, "then" 1/"a" + 1/"b" + 1/"c" =` ____________.
For positive numbers x, y, z, the numerical value of the determinant `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` is
Value of `|(2, 4),(-1, 2)|` is
In a third order matrix aij denotes the element of the ith row and the jth column.
A = `a_(ij) = {(0",", for, i = j),(1",", f or, i > j),(-1",", f or, i < j):}`
Assertion: Matrix ‘A’ is not invertible.
Reason: Determinant A = 0
Which of the following is correct?