Advertisements
Advertisements
Question
If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = ______.
Solution
If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = 0.
Explanation:
Given that `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ...
Taking (1 + x)17, (1 + x)23 and (1 + x)41 common from R1, R2 and R3 respectively
`(1 + x)^17 * (1 + x)^23 * (1 + x)^41 |(1, (1 + x)^2, (1 x)^6),(1, (1 + x)^6, (1 + x)^11),(1, (1 + x)^2, (1 + x)^6)|`
`(1 + x)^17 * (1 + x)^23 * (1 + x)^41 * 0` ....(R1 and R3 are identical)
∴ 0 = A + Bx + Cx2 + …
By comparing the like terms, we get A = 0.
APPEARS IN
RELATED QUESTIONS
Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`
Find values of x, if `|[2,3],[4,5]|=|[x,3],[2x,5]|`
Without expanding at any stage, find the value of:
`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`
Use properties of determinants to solve for x:
`|(x+a, b, c),(c, x+b, a),(a,b,x+c)| = 0` and `x != 0`
A matrix A of order 3 × 3 has determinant 5. What is the value of |3A|?
Let A = [aij] be a square matrix of order 3 × 3 and Cij denote cofactor of aij in A. If |A| = 5, write the value of a31 C31 + a32 C32 a33 C33.
A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.
A matrix A of order 3 × 3 is such that |A| = 4. Find the value of |2 A|.
If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A–1) = (det A)k.
Which of the following is not correct?
Which of the following is not correct in a given determinant of A, where A = [aij]3×3.
If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .
Solve the following system of linear equations using matrix method:
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2
Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0
Show that Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)`
The determinant ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` is equal to ______.
The value of the determinant ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______.
The determinant ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|` is independent of x only.
Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.
If A is a matrix of order 3 × 3, then |3A| = ______.
If A is a matrix of order 3 × 3, then (A2)–1 = ______.
The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`
The value of the determinant `abs ((1,0,0),(2, "cos x", "sin x"),(3, "sin x", "cos x"))` is ____________.
Let A be a square matrix of order 2 x 2, then `abs("KA")` is equal to ____________.
The value of determinant `|(sin^2 13°, sin^2 77°, tan135°),(sin^2 77°, tan135°, sin^2 13°),(tan135°, sin^2 13°, sin^2 77°)|` is
Value of `|(2, 4),(-1, 2)|` is