English

Use Properties of Determinants to Solve for X: `|(X+A, B, C),(C, X+B, A),(A,B,X+C)| = 0` and `X != 0` - Mathematics

Advertisements
Advertisements

Question

Use properties of determinants to solve for x:

`|(x+a, b, c),(c, x+b, a),(a,b,x+c)| = 0` and `x != 0` 

Solution

`|(x+a, b, c),(c, x+b, a),(a,b,x+c)| = 0` and `x != 0` 

`C_1"/"C_1+(C_2 + C_3)`

`|(x+a+b+c, b, c),(x+a+b+c, x+b, a),(x+a+b+c, b, x+c)| = 0`

`(x + a + b + c) |(1,b,c),(1,x+b,a),(1,b, x+c)| = 0`

`R_1"|"R_1-R_3`

`x+a+b+c|(0,0,-x),(1,x+b,a),(1,b,x+c)| = 0`

`:. (x+a+b+c)[0-0-x(b -x -b)] = 0`

`(x+a+b+c)(x^2) = 0`

`:. x^2 = 0`  or    x + a + b + c = 0

but `x!= 0 `

`:. x = -(a+b+c)`

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March) Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If A  = `[(1,1,-2),(2,1,-3),(5,4,-9)]`, Find |A|


Find values of x, if ` |(2,4),(5,1)|=|(2x, 4), (6,x)|`


Without expanding at any stage, find the value of:

`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`


If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .


Solve the following system of linear equations using matrix method: 
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2


Using matrices, solve the following system of linear equations :

x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11


If Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, then show that ∆ is equal to zero.


If x = – 4 is a root of Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, then find the other two roots.


If x, y ∈ R, then the determinant ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` lies in the interval.


The determinant ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` is equal to ______.


The determinant ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|` is independent of x only.


If a + b + c ≠ 0 and `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` 0, then prove that a = b = c.


Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.


If f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, then ______.


If x, y, z are all different from zero and `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, then value of x–1 + y–1 + z–1 is ______.


If A is invertible matrix of order 3 × 3, then |A–1| ______.


If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = ______.


If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.


The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`


If A, B, and C be the three square matrices such that A = B + C, then Det A is equal to


`abs ((1 + "a", "b", "c"),("a", 1 + "b", "c"),("a", "b", 1 + "c")) =` ____________


Find the minor of the element of the second row and third column in the following determinant `[(2,-3,5),(6,0,4),(1,5,-7)]`


If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.


If `"abc" ne 0  "and" abs ((1 + "a", 1, 1),(1, 1 + "b", 1),(1,1,1 + "c")) = 0, "then"  1/"a" + 1/"b" + 1/"c" =` ____________.


Find the 5th term of expansion of `(x^2 + 1/x)^10`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×