English

Show that the Function F(X) = `{(X^2, X<=1),(1/2, X>1):}` is Continuous at X = 1 but Not Differentiable. - Mathematics

Advertisements
Advertisements

Question

Show that the function f(x) = `{(x^2, x<=1),(1/2, x>1):}` is continuous at x = 1 but not differentiable.

Solution

Continuity at x = 1

`(x = 1)= x^2 = (1)^2 = 1`

`lim_(x->1^+) f(x) = lim_(x->1^+) 1/x = 1`

`lim_(x->1^-) f(x) = lim_(x->1^-) x^2 = 1`

`:. f(x = 1) =  lim_(x->1^-) f(x) = lim_(x->1^+) f(x) = 1`

:. f(x) is continuous at x = 1

Now differentiable at x = 1

(R.H.D at x = 1) = `lim_(x->1^+) (f(x) - f(1))/(x -1)`

`=lim_(x->1) (1/x- 1)/(x - 1)`

`= lim_(x-> 1) (-(x-1) 1/x)/(x-1)`

`= = -1/1 = -1`

(L.H.D at x = 1) = `lim_(x -> 1^(-)) (f(x)-f(1))/(x-1)`

`= lim_(x->1^1) (x^2 -1)/(x - 1) = 2`

`:. l.H.D != R.H.D`

:. f(x) is not differentiable at x = 1

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March) Set 1

RELATED QUESTIONS

Find the values of p and q for which

f(x) = `{((1-sin^3x)/(3cos^2x),`

is continuous at x = π/2.


Examine the continuity of the function f(x) = 2x2 – 1 at x = 3.


Find all point of discontinuity of f, where f is defined by `f (x) = {(2x + 3, if x<=2),(2x - 3, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|+3, if x<= -3),(-2x, if -3 < x < 3),(6x + 2, if x >= 3):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|/x , if x != 0),(0, if x = 0):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x+1, if x>=1),(x^2+1, if x < 1):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(x^3 - 3, if x <= 2),(x^2 + 1, if x > 2):}`


Find the points of discontinuity of f, where `f (x) = {(sinx/x, if x<0),(x + 1, if x >= 0):}`


Determine if f defined by `f(x) = {(x^2 sin  1/x, "," if x != 0),(0, "," if x = 0):}` is a continuous function?


Using mathematical induction prove that  `d/(dx) (x^n) = nx^(n -1)` for all positive integers n.


Find the value of constant ‘k’ so that the function f (x) defined as

f(x) = `{((x^2 -2x-3)/(x+1), x != -1),(k, x != -1):}`

is continous at x = -1


For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


If f(x) = `{{:("a"x + 1,  "if"  x ≥ 1),(x + 2,  "if"  x < 1):}` is continuous, then a should be equal to ______.


Find all points of discontinuity of the function f(t) = `1/("t"^2 + "t" - 2)`, where t = `1/(x - 1)`


The number of discontinuous functions y(x) on [-2, 2] satisfying x2 + y2 = 4 is ____________.


Let f (x) `= (1 - "tan x")/(4"x" - pi), "x" ne pi/4, "x" in (0, pi/2).` If f(x) is continuous in `(0, pi/2), "then f"(pi/4) =` ____________.


`lim_("x"-> 0) sqrt(1/2 (1 - "cos"  2"x"))/"x"` is equal to


The point of discountinuity of the function `f(x) = {{:(2x + 3",", x ≤ 2),(2x - 3",", x > 2):}` is are


How many point of discontinuity for the following function in its. domain.

`f(x) = {{:(x/|x|",", if  x < 0),(-1",", if x ≥ 0):}`


`f(x) = {{:(x^10 - 1",", if x ≤ 1),(x^2",", if x > 1):}` is discontinuous at


If function f(x) = `{{:((asinx + btanx - 3x)/x^3,",", x ≠ 0),(0,",", x = 0):}` is continuous at x = 0 then (a2 + b2) is equal to ______.


Let α ∈ R be such that the function

f(x) = `{{:((cos^-1(1 - {x}^2)sin^-1(1 - {x}))/({x} - {x}^3)",", x ≠ 0),(α",", x = 0):}`

is continuous at x = 0, where {x} = x – [x], [x] is the greatest integer less than or equal to x.


Find the value of k for which the function f given as

f(x) =`{{:((1 - cosx)/(2x^2)",", if x ≠ 0),(       k",", if x = 0 ):}` 

is continuous at x = 0.


If f(x) = `{{:((kx)/|x|"," if x < 0),(  3","   if x ≥ 0):}` is continuous at x = 0, then the value of k is ______.


Consider the graph `y = x^(1/3)`


Statement 1: The above graph is continuous at x = 0

Statement 2: The above graph is differentiable at x = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×