English

Find the points of discontinuity of f, where f(x)={sinxxifx<0x+1ifx≥0 - Mathematics

Advertisements
Advertisements

Question

Find the points of discontinuity of f, where `f (x) = {(sinx/x, if x<0),(x + 1, if x >= 0):}`

Sum

Solution

`f (x) = {(sinx/x, if x<0),(x + 1, if x >= 0):}`

At x = 0, f (0) = 1

L.H.L. = `lim_(x->0^+) f(x) = lim_(h->0)(sin(-h))/-h = 1`

R.H.L = `lim_(x->0^+) f(x) = lim_(h->0) (h + 1) = 0 + 1 = 1`

`lim_(x->0^-) f(x) = lim_(x->0^+) f (x) = f (0)`

∴ f is continuous at x = 0

When x<0, sinx and x both are continuous ,

∴ `sinx/x` is also continuous.

When x>0, f(x) = x = x + 1 is a polynomial

∴ f is continuous.

= f is not discontinuous at any point.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.1 [Page 160]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.1 | Q 23 | Page 160

RELATED QUESTIONS

Discuss the continuity of the following functions. If the function have a removable discontinuity, redefine the function so as to remove the discontinuity

`f(x)=(4^x-e^x)/(6^x-1)`  for x ≠ 0

         `=log(2/3) ` for x=0


Find the values of p and q for which

f(x) = `{((1-sin^3x)/(3cos^2x),`

is continuous at x = π/2.


Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.


Find all point of discontinuity of f, where f is defined by `f (x) = {(2x + 3, if x<=2),(2x - 3, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x/|x|, if x<0),(-1, if x >= 0):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x+1, if x>=1),(x^2+1, if x < 1):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(x^3 - 3, if x <= 2),(x^2 + 1, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x^10 - 1, if x<=1),(x^2, if x > 1):}`


Examine the continuity of f, where f is defined by `f(x) = {(sin x - cos x, if x != 0),(-1, "," if x = 0):}`


Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.


Find the value of constant ‘k’ so that the function f (x) defined as

f(x) = `{((x^2 -2x-3)/(x+1), x != -1),(k, x != -1):}`

is continous at x = -1


Show that the function f(x) = `{(x^2, x<=1),(1/2, x>1):}` is continuous at x = 1 but not differentiable.


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}x^{10} - 1, & \text{ if }  x \leq 1 \\ x^2 , & \text{ if } x > 1\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou: 

\[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x} , & x < \frac{\pi}{2} \\ 3 , & x = \frac{\pi}{2} \\ \frac{3 \tan 2x}{2x - \pi}, & x > \frac{\pi}{2}\end{cases}\]

The function f (x) = tan x is discontinuous on the set

 


Find the point of discontinuity, if any, of the following function: \[f\left( x \right) = \begin{cases}\sin x - \cos x , & \text{ if }  x \neq 0 \\ - 1 , & \text{ if }  x = 0\end{cases}\]


 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 


Prove that `1/2 "cos"^(-1) ((1-"x")/(1+"x")) = "tan"^-1 sqrt"x"`


Show that the function f given by:

`f(x)={((e^(1/x)-1)/(e^(1/x)+1),"if",x,!=,0),(-1,"if",x,=,0):}"`

is discontinuous at x = 0.


`lim_("x" -> pi/2)` [sinx] is equal to ____________.


The number of discontinuous functions y(x) on [-2, 2] satisfying x2 + y2 = 4 is ____________.


Let f (x) `= (1 - "tan x")/(4"x" - pi), "x" ne pi/4, "x" in (0, pi/2).` If f(x) is continuous in `(0, pi/2), "then f"(pi/4) =` ____________.


`lim_("x"-> 0) sqrt(1/2 (1 - "cos"  2"x"))/"x"` is equal to


The function f defined by `f(x) = {{:(x, "if"  x ≤ 1),(5, "if"  x > 1):}` discontinuous at x equal to


How many point of discontinuity for the following function for x ∈ R

`f(x) = {{:(x + 1",", if x ≥ 1),(x^2 + 1",", if x < 1):}`


`f(x) = {{:(x^10 - 1",", if x ≤ 1),(x^2",", if x > 1):}` is discontinuous at


If function f(x) = `{{:((asinx + btanx - 3x)/x^3,",", x ≠ 0),(0,",", x = 0):}` is continuous at x = 0 then (a2 + b2) is equal to ______.


If functions g and h are defined as

g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`

and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`

If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.


If f(x) = `{{:(cos ((π(sqrt(1 + x) - 1))/x)/x,",", x ≠ 0),(π/k,",", x = 0):}`

is continuous at x = 0, then k2 is equal to ______.


Let α ∈ R be such that the function

f(x) = `{{:((cos^-1(1 - {x}^2)sin^-1(1 - {x}))/({x} - {x}^3)",", x ≠ 0),(α",", x = 0):}`

is continuous at x = 0, where {x} = x – [x], [x] is the greatest integer less than or equal to x.


Find the value(s) of 'λ' if the function

f(x) = `{{:((sin^2 λx)/x^2",", if x ≠ 0  "is continuous at"  x = 0.),(1",", if x = 0):}`


If f(x) = `{{:((kx)/|x|"," if x < 0),(  3","   if x ≥ 0):}` is continuous at x = 0, then the value of k is ______.


The graph of the function f is shown below.

Of the following options, at what values of x is the function f NOT differentiable?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×