English

Show that the Function F ( X ) = | X − 4 | , X ∈ R is Continuous, but Not Diffrent at X = 4. - Mathematics

Advertisements
Advertisements

Question

 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 

Sum

Solution

7(x) = x-4; x ≥ 4
= 4 - X ;  X<4
`L.H.L : lim_(x->4) f(X)= lim_(x->)4- x =4-4=0`

`R.H.L ; = lim_(x->4) f (X) = lim_(x->4)=4-4=0`

f(4) = 4-4 =0
∴ f(x) is continuous at X = 4.

`R.H.D = f '(4^+) = lim_(h->0)  (f(4+h)-f(4))/((4+h)-4)` 

                           = `lim_(h->0) ((4+h-4)-0)/h`

                           = `lim_(h->0) 1 = 1`

`L.H.D = f'(4^-)=lim_(h->0)  (f(4)-f(4-h))/(4- (4 -h))`

`=lim_(h->0) 0 -(4-(4-h))/h `

`=lim_(h->0)- h/h =-1`

∴ L.H.D . ≠R.H.D.

∴ f '(4) does not exists.
∴ f (4) is continuous at X = 4 but non differentiable at X=4.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) Set 1

RELATED QUESTIONS

Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.


Is the function f defined by f(x)= `{(x, if x<=1),(5, if x > 1):}`  continuous at x = 0? At x = 1? At x = 2?


Find all point of discontinuity of f, where f is defined by `f (x) = {(2x + 3, if x<=2),(2x - 3, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|/x , if x != 0),(0, if x = 0):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x/|x|, if x<0),(-1, if x >= 0):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(x^3 - 3, if x <= 2),(x^2 + 1, if x > 2):}`


Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.


Using mathematical induction prove that  `d/(dx) (x^n) = nx^(n -1)` for all positive integers n.


Determine the value of the constant 'k' so that function f(x) `{((kx)/|x|, ","if  x < 0),(3"," , if x >= 0):}` is continuous at x = 0


Show that the function f(x) = `{(x^2, x<=1),(1/2, x>1):}` is continuous at x = 1 but not differentiable.


Prove that the function 

\[f\left( x \right) = \begin{cases}\frac{x}{\left| x \right| + 2 x^2}, & x \neq 0 \\ k , & x = 0\end{cases}\]  remains discontinuous at x = 0, regardless the choice of k.

For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?


Find the relationship between 'a' and 'b' so that the function 'f' defined by 

\[f\left( x \right) = \begin{cases}ax + 1, & \text{ if }  x \leq 3 \\ bx + 3, & \text{ if } x > 3\end{cases}\] is continuous at x = 3.

 


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}- 2 , & \text{ if }& x \leq - 1 \\ 2x , & \text{ if } & - 1 < x < 1 \\ 2 , & \text{ if }  & x \geq 1\end{cases}\]


Find the point of discontinuity, if any, of the following function: \[f\left( x \right) = \begin{cases}\sin x - \cos x , & \text{ if }  x \neq 0 \\ - 1 , & \text{ if }  x = 0\end{cases}\]


Show that the function f given by:

`f(x)={((e^(1/x)-1)/(e^(1/x)+1),"if",x,!=,0),(-1,"if",x,=,0):}"`

is discontinuous at x = 0.


If f(x) = `{{:("a"x + 1,  "if"  x ≥ 1),(x + 2,  "if"  x < 1):}` is continuous, then a should be equal to ______.


`lim_("x" -> pi/2)` [sinx] is equal to ____________.


The number of discontinuous functions y(x) on [-2, 2] satisfying x2 + y2 = 4 is ____________.


If f(x) `= sqrt(4 + "x" - 2)/"x", "x" ne 0` be continuous at x = 0, then f(0) = ____________.


`f(x) = {{:(x^3 - 3",", if x < 2),(x^2 + 1",", if x > 2):}` has how many point of discontinuity


Sin |x| is a continuous function for


If f(x) = `{{:(cos ((π(sqrt(1 + x) - 1))/x)/x,",", x ≠ 0),(π/k,",", x = 0):}`

is continuous at x = 0, then k2 is equal to ______.


Find the value(s) of 'λ' if the function

f(x) = `{{:((sin^2 λx)/x^2",", if x ≠ 0  "is continuous at"  x = 0.),(1",", if x = 0):}`


The graph of the function f is shown below.

Of the following options, at what values of x is the function f NOT differentiable?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×