English

Find the Points of Discontinuity, If Any, of the Following Functions: F ( X ) = ⎧ ⎨ ⎩ 2 X , I F X < 0 0 , I F 0 ≤ X ≤ 1 4 X , I F X > 1 - Mathematics

Advertisements
Advertisements

Question

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]

Sum

Solution

The given function is  \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]

The given function is defined at all points of the real line.

Let c be a point on the real line.

Case I:

` "If "c < 0, " then "  f(c)=2c`

`lim_(x->c)=lim_(x->c)(c)=2c`

`∴lim_(N->oo)f(x)=f(c)`

Therefore, f is continuous at all points x, such that x < 0

Case II:

` " If " (0), " then "  f(c)=f(0)=0`

The left hand limit of at x = 0 is,

`lim_(x->0)f(x)=lim_(x->0)(2x)=2xx0=0`

The right hand limit of f at = 0 is,

`lim_(x->0)f(x)=lim_(x->0)(0)=0`

`∴lim_(x->0)(x)=f(0)`

Therefore, f is continuous at x = 0

Case III:

` " If "  0 < c< 1 " then " f(x)  " and "  lim_(x->c) f(x)=lim_(x->c)(0)=0`

`∴ lim_(x->c)f(x)=f(c)`

Therefore, f is continuous at all points of the interval (0, 1).

Case IV:

` " If "c=1 " then "  f(c)=f(1)=0`

The left hand limit of at x = 1 is, 

`lim_(x->1)f(x)= lim_(x->1)f(1)=0`

The right hand limit of f at = 1 is,

`lim_(x->1)f(x)=lim_(x->1)(4x)=4xx1=4`

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case V:

` " If " c <, " then " f(c)=4c " and " lim_(x->c)f(4x)=4c`

`∴ lim_(x->c)f(x)=f(c)`

Therefore, f is continuous at all points x, such that x > 1

Hence, is not continuous only at = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.2 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.2 | Q 3.11 | Page 34

RELATED QUESTIONS

Find the values of p and q for which

f(x) = `{((1-sin^3x)/(3cos^2x),`

is continuous at x = π/2.


Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.


Is the function f defined by f(x)= `{(x, if x<=1),(5, if x > 1):}`  continuous at x = 0? At x = 1? At x = 2?


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|+3, if x<= -3),(-2x, if -3 < x < 3),(6x + 2, if x >= 3):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x/|x|, if x<0),(-1, if x >= 0):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(x^3 - 3, if x <= 2),(x^2 + 1, if x > 2):}`


Is the function defined by `f(x) = {(x+5, if x <= 1),(x -5, if x > 1):}` a continuous function?


Show that the function defined by  g(x) = x = [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.


Examine the continuity of f, where f is defined by `f(x) = {(sin x - cos x, if x != 0),(-1, "," if x = 0):}`


Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.


Determine the value of the constant 'k' so that function f(x) `{((kx)/|x|, ","if  x < 0),(3"," , if x >= 0):}` is continuous at x = 0


Find the value of constant ‘k’ so that the function f (x) defined as

f(x) = `{((x^2 -2x-3)/(x+1), x != -1),(k, x != -1):}`

is continous at x = -1


Show that the function f(x) = `{(x^2, x<=1),(1/2, x>1):}` is continuous at x = 1 but not differentiable.


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}x^{10} - 1, & \text{ if }  x \leq 1 \\ x^2 , & \text{ if } x > 1\end{cases}\]


The function f (x) = tan x is discontinuous on the set

 


 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 


Prove that `1/2 "cos"^(-1) ((1-"x")/(1+"x")) = "tan"^-1 sqrt"x"`


If f(x) = `{{:("a"x + 1,  "if"  x ≥ 1),(x + 2,  "if"  x < 1):}` is continuous, then a should be equal to ______.


Find all points of discontinuity of the function f(t) = `1/("t"^2 + "t" - 2)`, where t = `1/(x - 1)`


`lim_("x" -> pi/2)` [sinx] is equal to ____________.


The number of discontinuous functions y(x) on [-2, 2] satisfying x2 + y2 = 4 is ____________.


The function `f(x) = (x^2 - 25)/(x + 5)` is continuous at x =


`f(x) = {{:(x^3 - 3",", if x < 2),(x^2 + 1",", if x > 2):}` has how many point of discontinuity


`f(x) = {{:(x^10 - 1",", if x ≤ 1),(x^2",", if x > 1):}` is discontinuous at


If function f(x) = `{{:((asinx + btanx - 3x)/x^3,",", x ≠ 0),(0,",", x = 0):}` is continuous at x = 0 then (a2 + b2) is equal to ______.


If f(x) = `{{:(cos ((π(sqrt(1 + x) - 1))/x)/x,",", x ≠ 0),(π/k,",", x = 0):}`

is continuous at x = 0, then k2 is equal to ______.


Let α ∈ R be such that the function

f(x) = `{{:((cos^-1(1 - {x}^2)sin^-1(1 - {x}))/({x} - {x}^3)",", x ≠ 0),(α",", x = 0):}`

is continuous at x = 0, where {x} = x – [x], [x] is the greatest integer less than or equal to x.


Find the value(s) of 'λ' if the function

f(x) = `{{:((sin^2 λx)/x^2",", if x ≠ 0  "is continuous at"  x = 0.),(1",", if x = 0):}`


Find the value of k for which the function f given as

f(x) =`{{:((1 - cosx)/(2x^2)",", if x ≠ 0),(       k",", if x = 0 ):}` 

is continuous at x = 0.


If f(x) = `{{:((kx)/|x|"," if x < 0),(  3","   if x ≥ 0):}` is continuous at x = 0, then the value of k is ______.


The graph of the function f is shown below.

Of the following options, at what values of x is the function f NOT differentiable?


Consider the graph `y = x^(1/3)`


Statement 1: The above graph is continuous at x = 0

Statement 2: The above graph is differentiable at x = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×