मराठी

Find the Points of Discontinuity, If Any, of the Following Functions: F ( X ) = ⎧ ⎨ ⎩ 2 X , I F X < 0 0 , I F 0 ≤ X ≤ 1 4 X , I F X > 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]

बेरीज

उत्तर

The given function is  \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]

The given function is defined at all points of the real line.

Let c be a point on the real line.

Case I:

` "If "c < 0, " then "  f(c)=2c`

`lim_(x->c)=lim_(x->c)(c)=2c`

`∴lim_(N->oo)f(x)=f(c)`

Therefore, f is continuous at all points x, such that x < 0

Case II:

` " If " (0), " then "  f(c)=f(0)=0`

The left hand limit of at x = 0 is,

`lim_(x->0)f(x)=lim_(x->0)(2x)=2xx0=0`

The right hand limit of f at = 0 is,

`lim_(x->0)f(x)=lim_(x->0)(0)=0`

`∴lim_(x->0)(x)=f(0)`

Therefore, f is continuous at x = 0

Case III:

` " If "  0 < c< 1 " then " f(x)  " and "  lim_(x->c) f(x)=lim_(x->c)(0)=0`

`∴ lim_(x->c)f(x)=f(c)`

Therefore, f is continuous at all points of the interval (0, 1).

Case IV:

` " If "c=1 " then "  f(c)=f(1)=0`

The left hand limit of at x = 1 is, 

`lim_(x->1)f(x)= lim_(x->1)f(1)=0`

The right hand limit of f at = 1 is,

`lim_(x->1)f(x)=lim_(x->1)(4x)=4xx1=4`

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case V:

` " If " c <, " then " f(c)=4c " and " lim_(x->c)f(4x)=4c`

`∴ lim_(x->c)f(x)=f(c)`

Therefore, f is continuous at all points x, such that x > 1

Hence, is not continuous only at = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.2 | Q 3.11 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Find the values of p and q for which

f(x) = `{((1-sin^3x)/(3cos^2x),`

is continuous at x = π/2.


Examine the continuity of the function f(x) = 2x2 – 1 at x = 3.


Prove that the function `f(x) = x^n` is continuous at x = n, where n is a positive integer.


Find all points of discontinuity of f, where f is defined by `f (x) = {(x/|x|, if x<0),(-1, if x >= 0):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x+1, if x>=1),(x^2+1, if x < 1):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(x^3 - 3, if x <= 2),(x^2 + 1, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x^10 - 1, if x<=1),(x^2, if x > 1):}`


Show that the function defined by  g(x) = x = [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.


Find the points of discontinuity of f, where `f (x) = {(sinx/x, if x<0),(x + 1, if x >= 0):}`


Determine if f defined by `f(x) = {(x^2 sin  1/x, "," if x != 0),(0, "," if x = 0):}` is a continuous function?


Examine the continuity of f, where f is defined by `f(x) = {(sin x - cos x, if x != 0),(-1, "," if x = 0):}`


Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.


Using mathematical induction prove that  `d/(dx) (x^n) = nx^(n -1)` for all positive integers n.


Find the value of constant ‘k’ so that the function f (x) defined as

f(x) = `{((x^2 -2x-3)/(x+1), x != -1),(k, x != -1):}`

is continous at x = -1


Show that the function f(x) = `{(x^2, x<=1),(1/2, x>1):}` is continuous at x = 1 but not differentiable.


For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?


Find the relationship between 'a' and 'b' so that the function 'f' defined by 

\[f\left( x \right) = \begin{cases}ax + 1, & \text{ if }  x \leq 3 \\ bx + 3, & \text{ if } x > 3\end{cases}\] is continuous at x = 3.

 


Discuss the Continuity of the F(X) at the Indicated Points : F(X) = | X − 1 | + | X + 1 | at X = −1, 1.


 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 


Prove that `1/2 "cos"^(-1) ((1-"x")/(1+"x")) = "tan"^-1 sqrt"x"`


Show that the function f given by:

`f(x)={((e^(1/x)-1)/(e^(1/x)+1),"if",x,!=,0),(-1,"if",x,=,0):}"`

is discontinuous at x = 0.


If f(x) = `{{:("a"x + 1,  "if"  x ≥ 1),(x + 2,  "if"  x < 1):}` is continuous, then a should be equal to ______.


The number of discontinuous functions y(x) on [-2, 2] satisfying x2 + y2 = 4 is ____________.


If f(x) `= sqrt(4 + "x" - 2)/"x", "x" ne 0` be continuous at x = 0, then f(0) = ____________.


The domain of the function f(x) = `""^(24 - x)C_(3x - 1) + ""^(40 - 6x)C_(8x - 10)` is


`f(x) = {{:(x^3 - 3",", if x < 2),(x^2 + 1",", if x > 2):}` has how many point of discontinuity


`f(x) = {{:(x^10 - 1",", if x ≤ 1),(x^2",", if x > 1):}` is discontinuous at


Sin |x| is a continuous function for


Let a, b ∈ R, b ≠ 0. Define a function

F(x) = `{{:(asin  π/2(x - 1)",", "for"  x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`

If f is continuous at x = 0, then 10 – ab is equal to ______.


If f(x) = `{{:((log_(sin|x|) cos^2x)/(log_(sin|3x|) cos  x/2), |x| < π/3; x ≠ 0),(k, x = 0):}`, then value of k for which f(x) is continuous at x = 0 is ______.


If the function f defined as f(x) = `1/x - (k - 1)/(e^(2x) - 1)` x ≠ 0, is continuous at x = 0, then the ordered pair (k, f(0)) is equal to ______.


Find the value(s) of 'λ' if the function

f(x) = `{{:((sin^2 λx)/x^2",", if x ≠ 0  "is continuous at"  x = 0.),(1",", if x = 0):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×