मराठी

Show that the function defined by g(x) = x = [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function defined by  g(x) = x = [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.

बेरीज

उत्तर

Let n ∈ I.

Then `lim_(x->n^-)[x] = n - 1`

∵[x] = n - 1 ∀ x ∈ [n - 1,n]

and g(n) = n - n = 0 ∵ [n] = n because n ∈ I]

Now,

`lim_(x->n^-) g(x) = lim_(x->n^-) (x - [x]) = lim_(x->n^-) x - lim_(x->n^-)[x] = n - (n - 1) = 1`

and `lim_(x->n^+) g(x) = lim_(x->n^+)(x - [x]) = lim_(x->n^+)x - lim_(x->n^+)[x] = n - n = 0`

Thus, `lim_(x->n^-) g(x) ne lim_(x->n^+)g(x)`

Hence, g is discontinuous at all integral points.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.1 [पृष्ठ १६०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.1 | Q 19 | पृष्ठ १६०

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Discuss the continuity of the following functions. If the function have a removable discontinuity, redefine the function so as to remove the discontinuity

`f(x)=(4^x-e^x)/(6^x-1)`  for x ≠ 0

         `=log(2/3) ` for x=0


Show that the function `f(x)=|x-3|,x in R` is continuous but not differentiable at x = 3.


Find the values of p and q for which

f(x) = `{((1-sin^3x)/(3cos^2x),`

is continuous at x = π/2.


Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|+3, if x<= -3),(-2x, if -3 < x < 3),(6x + 2, if x >= 3):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|/x , if x != 0),(0, if x = 0):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x/|x|, if x<0),(-1, if x >= 0):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x+1, if x>=1),(x^2+1, if x < 1):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(x^3 - 3, if x <= 2),(x^2 + 1, if x > 2):}`


Is the function defined by `f(x) = {(x+5, if x <= 1),(x -5, if x > 1):}` a continuous function?


Find the points of discontinuity of f, where `f (x) = {(sinx/x, if x<0),(x + 1, if x >= 0):}`


Examine the continuity of f, where f is defined by `f(x) = {(sin x - cos x, if x != 0),(-1, "," if x = 0):}`


Using mathematical induction prove that  `d/(dx) (x^n) = nx^(n -1)` for all positive integers n.


Find the value of constant ‘k’ so that the function f (x) defined as

f(x) = `{((x^2 -2x-3)/(x+1), x != -1),(k, x != -1):}`

is continous at x = -1


For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?


Find the relationship between 'a' and 'b' so that the function 'f' defined by 

\[f\left( x \right) = \begin{cases}ax + 1, & \text{ if }  x \leq 3 \\ bx + 3, & \text{ if } x > 3\end{cases}\] is continuous at x = 3.

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\left| x \right| + 3 , & \text{ if } x \leq - 3 \\ - 2x , & \text { if }  - 3 < x < 3 \\ 6x + 2 , & \text{ if }  x > 3\end{cases}\]

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


Discuss the Continuity of the F(X) at the Indicated Points : F(X) = | X − 1 | + | X + 1 | at X = −1, 1.


 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 


The domain of the function f(x) = `""^(24 - x)C_(3x - 1) + ""^(40 - 6x)C_(8x - 10)` is


The function f defined by `f(x) = {{:(x, "if"  x ≤ 1),(5, "if"  x > 1):}` discontinuous at x equal to


The point of discountinuity of the function `f(x) = {{:(2x + 3",", x ≤ 2),(2x - 3",", x > 2):}` is are


How many point of discontinuity for the following function for x ∈ R

`f(x) = {{:(x + 1",", if x ≥ 1),(x^2 + 1",", if x < 1):}`


`f(x) = {{:(x^3 - 3",", if x < 2),(x^2 + 1",", if x > 2):}` has how many point of discontinuity


`f(x) = {{:(x^10 - 1",", if x ≤ 1),(x^2",", if x > 1):}` is discontinuous at


If function f(x) = `{{:((asinx + btanx - 3x)/x^3,",", x ≠ 0),(0,",", x = 0):}` is continuous at x = 0 then (a2 + b2) is equal to ______.


If f(x) = `{{:(cos ((π(sqrt(1 + x) - 1))/x)/x,",", x ≠ 0),(π/k,",", x = 0):}`

is continuous at x = 0, then k2 is equal to ______.


If f(x) = `{{:((log_(sin|x|) cos^2x)/(log_(sin|3x|) cos  x/2), |x| < π/3; x ≠ 0),(k, x = 0):}`, then value of k for which f(x) is continuous at x = 0 is ______.


Let α ∈ R be such that the function

f(x) = `{{:((cos^-1(1 - {x}^2)sin^-1(1 - {x}))/({x} - {x}^3)",", x ≠ 0),(α",", x = 0):}`

is continuous at x = 0, where {x} = x – [x], [x] is the greatest integer less than or equal to x.


Consider the graph `y = x^(1/3)`


Statement 1: The above graph is continuous at x = 0

Statement 2: The above graph is differentiable at x = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×