Advertisements
Advertisements
प्रश्न
For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x), "," if x <= 0),(4x+ 1, "," if x > 0):}` continuous at x = 0? What about continuity at x = 1?
उत्तर
`f(x) = {(lambda(x^2 - 2x), "," if x <= 0),(4x+ 1, "," if x > 0):}`
If f(x) is continuous at x = 0, it implies:
f (0) = `lim_(x -> 0^+) f(x) = lim_(x -> 0^-) "f"(x)`
`=> (0^2 - 2(0)) = (4 (0) + 1) = (0^2 - 2 (0))`
`=> 0 = 1 = 0`
Which cannot be true, i.e. for any value of `lambda` this function is not continuous at x = 0.
If f(x) is continuous at x = 1, this implies:
f(1) = `lim_(x -> 1^+) f (x) = lim_(x -> 1^-) "f"(x)`
⇒ 4(1) + 1 = 4(1) + 1 = 4(1) + 1
⇒ 5 = 5 = 5
Which is always true, i.e. for any value of `lambda` this function is continuous at x = 1.
APPEARS IN
संबंधित प्रश्न
A function f (x) is defined as
f (x) = x + a, x < 0
= x, 0 ≤x ≤ 1
= b- x, x ≥1
is continuous in its domain.
Find a + b.
Is the function defined by `f(x) = x^2 - sin x + 5` continuous at x = π?
Discuss the continuity of the following function:
f (x) = sin x × cos x
Show that the function defined by f(x) = |cos x| is a continuous function.
Examine sin |x| is a continuous function.
Examine the continuity of the function
\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]
Also sketch the graph of this function.
Find the values of a so that the function
Let \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if } & x = 0\end{cases}\] at x = 0
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1
Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if } x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.
Discuss the continuity of the function
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if } x = 2\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if } x \neq 0 \\ 3k , & \text{ if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if } x \leq 2 \\ x - 1, & \text{ if } x > 2\end{cases}\]
If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]
for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].
Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x
Show that f (x) = cos x2 is a continuous function.
If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then write the value of k.
Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\] is continuous at x = 0 or not.
Determine the value of the constant 'k' so that function f
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
The function \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\]
The function
If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\]
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\]
then at x = 0, f (x) is
The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.
Let f(x) = |sin x|. Then ______.
`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.
Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.
The point(s), at which the function f given by f(x) = `{("x"/|"x"|"," "x" < 0),(-1"," "x" ≥ 0):}` is continuous, is/are:
The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2
Find the values of `a` and ` b` such that the function by:
`f(x) = {{:(5",", if x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`
is a continuous function.
The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",", if x ≠ 0),(k",", if x = 0):}` is continuous at x = 0 is ______.
Discuss the continuity of the following function:
f(x) = sin x + cos x
Discuss the continuity of the following function:
f(x) = sin x – cos x