Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\]
पर्याय
\[a = b = c = 0\]
\[a = 0, b = 0; c \in R\]
\[b = c = 0, a \in R\]
\[c = 0, a = 0, b \in R\]
उत्तर
(b) \[a = 0, b = 0; c \in R\]
\[\text{ We have }, \]
\[f\left( x \right) = a \left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3 \]
`= {(a sin x+be^x +cx^3 , 0<x<pi/2),(-a sin x +be^(-x) -cx^3 , -pi/2 <x <0):}`
\[\text{Here,} f\left( x \right)\text { is differentiable at x} = 0\]
\[\text{Therefore}, \left(\text { LHD at x } = 0 \right) = \left( \text { RHD at x } = 0 \right)\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0} = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{- a \ sinx + b e^{- x} - c x^3 - b}{x} = \lim_{x \to 0^+} \frac{a \sin x + b e^x + c x^3 - b}{x}\]
\[ \Rightarrow \lim_{h \to 0} \frac{- a \sin\left( 0 - h \right) + b e^{- \left( 0 - h \right)} - c \left( 0 - h \right)^3 - b}{0 - h} = \lim_{h \to 0} \frac{a \sin \left( 0 + h \right) + b e^\left( 0 + h \right) + c \left( 0 + h \right)^3 - b}{0 + h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a \sin h + be {}^h + c h^3 - b}{- h} = \lim_{h \to 0} \frac{a \sin h + b e^h + c h^3 - b}{h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a \cos h + b e^h + 3c h^2}{- 1} = \lim_{h \to 0} \frac{a \cos h + b e^h + 3c h^2}{1} \left( By L'Hospital rule \right)\]
\[ \Rightarrow - \left( a + b \right) = a + b\]
\[ \Rightarrow - 2\left( a + b \right) = 0\]
\[ \Rightarrow a + b = 0\]
\[\text{This is true for all value of c}\]
\[ \text{therefore c} \in R\]
\[\text{In the given options, option} \left( b \right) \text { satisfies a + b = 0 and c} \in R\]
APPEARS IN
संबंधित प्रश्न
Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x > 3):}` is continuous at x = 3.
For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x), "," if x <= 0),(4x+ 1, "," if x > 0):}` continuous at x = 0? What about continuity at x = 1?
Discuss the continuity of the following function:
f (x) = sin x × cos x
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`
Examine sin |x| is a continuous function.
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if } & x = 0\end{cases}\] at x = 0
If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if } } 1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.
Discuss the continuity of the function
Find the points of discontinuity, if any, of the following functions:
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if } x = 2\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if } x \neq 0 \\ 3k , & \text{ if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if } x \leq 2 \\ x - 1, & \text{ if } x > 2\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}2 , & \text{ if } x \leq 3 \\ ax + b, & \text{ if } 3 < x < 5 \\ 9 , & \text{ if } x \geq 5\end{cases}\]
Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.
If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then write the value of k.
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
Let \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when
\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by
If \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =
The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is
Find the values of a and b so that the function
The function f (x) = 1 + |cos x| is
If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.
The function f(x) = `"e"^|x|` is ______.
If f.g is continuous at x = a, then f and g are separately continuous at x = a.
`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.
Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0
The function f(x) = 5x – 3 is continuous at x =
The function f(x) = x2 – sin x + 5 is continuous at x =
What is the values of' 'k' so that the function 'f' is continuous at the indicated point
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`
Discuss the continuity of the following function:
f(x) = sin x – cos x