Advertisements
Advertisements
Question
If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\]
Options
\[a = b = c = 0\]
\[a = 0, b = 0; c \in R\]
\[b = c = 0, a \in R\]
\[c = 0, a = 0, b \in R\]
Solution
(b) \[a = 0, b = 0; c \in R\]
\[\text{ We have }, \]
\[f\left( x \right) = a \left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3 \]
`= {(a sin x+be^x +cx^3 , 0<x<pi/2),(-a sin x +be^(-x) -cx^3 , -pi/2 <x <0):}`
\[\text{Here,} f\left( x \right)\text { is differentiable at x} = 0\]
\[\text{Therefore}, \left(\text { LHD at x } = 0 \right) = \left( \text { RHD at x } = 0 \right)\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0} = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{- a \ sinx + b e^{- x} - c x^3 - b}{x} = \lim_{x \to 0^+} \frac{a \sin x + b e^x + c x^3 - b}{x}\]
\[ \Rightarrow \lim_{h \to 0} \frac{- a \sin\left( 0 - h \right) + b e^{- \left( 0 - h \right)} - c \left( 0 - h \right)^3 - b}{0 - h} = \lim_{h \to 0} \frac{a \sin \left( 0 + h \right) + b e^\left( 0 + h \right) + c \left( 0 + h \right)^3 - b}{0 + h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a \sin h + be {}^h + c h^3 - b}{- h} = \lim_{h \to 0} \frac{a \sin h + b e^h + c h^3 - b}{h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a \cos h + b e^h + 3c h^2}{- 1} = \lim_{h \to 0} \frac{a \cos h + b e^h + 3c h^2}{1} \left( By L'Hospital rule \right)\]
\[ \Rightarrow - \left( a + b \right) = a + b\]
\[ \Rightarrow - 2\left( a + b \right) = 0\]
\[ \Rightarrow a + b = 0\]
\[\text{This is true for all value of c}\]
\[ \text{therefore c} \in R\]
\[\text{In the given options, option} \left( b \right) \text { satisfies a + b = 0 and c} \in R\]
APPEARS IN
RELATED QUESTIONS
A function f (x) is defined as
f (x) = x + a, x < 0
= x, 0 ≤x ≤ 1
= b- x, x ≥1
is continuous in its domain.
Find a + b.
Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}` is a continuous function.
Show that the function defined by f(x) = |cos x| is a continuous function.
Find the values of a so that the function
Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if } x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.
Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\] is everywhere continuous.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if } x \leq 2 \\ x - 1, & \text{ if } x > 2\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}2 , & \text{ if } x \leq 3 \\ ax + b, & \text{ if } 3 < x < 5 \\ 9 , & \text{ if } x \geq 5\end{cases}\]
Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.
Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x
Show that f (x) = cos x2 is a continuous function.
If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then write the value of k.
If the function \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).
Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\] is continuous at x = 0 or not.
Determine the value of the constant 'k' so that function f
If \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is
Let \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when
The function \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\]
The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is
If the function f (x) defined by \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =
Find the values of a and b, if the function f defined by
If f is defined by \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\]
If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\] then f (x) is
The function f (x) = |cos x| is
The function f (x) = 1 + |cos x| is
The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is
The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.
Let f(x) = |sin x|. Then ______.
`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.
What is the values of' 'k' so that the function 'f' is continuous at the indicated point
Find the values of `a` and ` b` such that the function by:
`f(x) = {{:(5",", if x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`
is a continuous function.
The function f(x) = x |x| is ______.