English

The function f(x) = x |x| is ______. - Mathematics

Advertisements
Advertisements

Question

The function f(x) = x |x| is ______.

Options

  • continuous and differentiable at x = 0

  • continuous but not differentiable at x = 0

  • differentiable but not continuous at x = 0

  • neither differentiable nor continuous at x = 0

MCQ
Fill in the Blanks

Solution

The function f(x) = x |x| is continuous and differentiable at x = 0.

Explanation:

Given, the function is f(x) = x |x| for x ∈ R.

The function can be written as,

f(x) = `{{:(      x^2; x > 0),(-x^2; x ≤ 0):}`

Now, Rf(0) = `lim_(x rightarrow 0^+) (x^2)` = 0

and Lf(0) = `lim_(x rightarrow 0^-) (-x^2)` = 0

So, Lf(0) = Rf(0) = f(0)

So, the function is continuous at 0.

Now, Rf'(0) = `lim_(x rightarrow 0^+) (f(x) - f(0))/(x - 0)`

= `lim_(x rightarrow 0^+) (x^2 - 0)/x` = 0

and Lf'(0) = `lim_(x rightarrow 0^-) (f(x) - f(0))/(x - 0)`

= `lim_(x rightarrow 0^-) (-x^2 - 0)/x` = 0

So, Lf'(0) = Rf'(0)

So, function is differentiable at 0.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 1

RELATED QUESTIONS

Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


Discuss the continuity of the following function:

f (x) = sin x × cos x


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]


If  \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\]   is continuous at x = 0, find k.


If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\]  is everywhere continuous.

 


In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if  }  x \leq 2 \\ x - 1, & \text{ if }  x > 2\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}k( x^2 + 3x), & \text{ if }  x < 0 \\ \cos 2x , & \text{ if }  x \geq 0\end{cases}\]


If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]

for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].


Show that f (x) = | cos x | is a continuous function.

 

Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\]  is continuous at x = 0 or not.

 


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =

 


If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


If the function  \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is 


If the function f (x) defined by  \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =

 


Find the values of a and b so that the function

\[f\left( x \right)\begin{cases}x^2 + 3x + a, & \text { if } x \leq 1 \\ bx + 2 , &\text {  if } x > 1\end{cases}\] is differentiable at each x ∈ R.

If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


The function f (x) = |cos x| is


The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.


Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0


The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",",  if x ≠ 0),(k",",  if x = 0):}` is continuous at x = 0 is ______.


Discuss the continuity of the following function:

f(x) = sin x + cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×