English

If tan(x+yx-y) = k, then dydx is equal to ______. - Mathematics

Advertisements
Advertisements

Question

If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.

Options

  • `(-y)/x`

  • `y/x`

  • `sec^2 (y/x)`

  • `-sec^2 (y/x)`

MCQ
Fill in the Blanks

Solution

If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to `underlinebb(y/x)`.

Explanation:

Given

`tan((x + y)/(x - y))` = k

`(x + y)/(x - y)` = tan–1 k

On differentiating both sides, w.r.t. x, we get

`((x - y)d/dx(x + y) - (x + y)d/dx(x - y))/(x - y)^2 = d/dx [tan^-1 k]`

`\implies ((x - y)(1 + dy/dx) - (x + y)(1 - dy/dx))/(x - y)^2` = 0

`\implies (x - y)(1 + dy/dx) - (x + y)(1 - dy/dx)` = 0

`\implies (x - y) + (x - y) dy/dx = (x + y) - (x + y) dy/dx`

`\implies [(x - y) + (x + y)] dy/dx` = (x + y) – (x – y)

`\implies 2x dy/dx` = 2y

`\implies dy/dx = y/x`.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 1

RELATED QUESTIONS

Find dy/dx if x sin y + y sin x = 0.


If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : cos x


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×