Advertisements
Advertisements
Question
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
Solution 1
x sin (a + y) + sin a . cos (a + y) = 0 ...(1)
Differentiating w.r.t. x, we get
`x"d"/"dx"[sin(a + y)] + sin(a + y)."d"/"dx"(x) + (sina)."d"/"dx"[cos(a + y)]= 0`
`∴ xcos(a + y)."d"/"dx"(a + y) + sin(a + y) xx 1 + (sina) [-sin(a + y)]."d"/"dx"(a + y) = 0`
`∴ xcos(a + y).(0 + dy/dx) + sin(a + y) - sina.sin(a + y)(0 + dy/dx) = 0`
`∴ xcos(a + y)"dy"/"dx" + sin(a + y) - sina.sin(a + y)"dy"/"dx" = 0`
`∴ sina.sin(a + y)"dy"/"dx" - xcos(a + y)"dy"/"dx" = sin(a + y)`
`∴ [sina.sin(a + y) - xcos(a + y)]"dy"/"dx" = sin(a + y)`
`∴ "dy"/"dx" = (sin(a + y))/(sina.sin(a + y) - xcos(a + y)`
From (1),
`x = (-sina.cos(a + y))/(sin(a + y)`
`∴ "dy"/"dx" = (sin(a + y))/(sina.sin(a + y) + (sina.cos(a + y))/(sin(a + y)).cos(a + y)`
`= (sin^2(a + y))/(sina.sin^2(a + y) + sina.cos^2(a + y)`
`= (sin^2(a + y))/(sina[sin^2(a + y) + cos^2(a + y)]`
`∴ "dy"/"dx" = (sin^2(a + y))/(sina)`.
Solution 2
x sin (a + y) + sin a . cos (a + y) = 0
∴ x sin (a + y) = – sin a. cos (a + y)
∴ x = `-sina.(cos(a + y))/(sin(a + y)`
∴ x = – sin a . cot (a + y)
Differentiating both sides w.r.t. y, we get
`"dx"/"dy" = -sina."d"/"dx"[cot(a + y)]`
= `-sina.[-"cosec"^2(a + y)]."d"/"dx"(a + y)`
= sin a . cosec2(a + y) . (0 + 1)
= `(sina)/(sin^2(a + y)`
∴ `"dy"/"dx" = (1)/((dx/dy)`
= `(sin^2(a + y))/(sina)`.
APPEARS IN
RELATED QUESTIONS
If y=eax ,show that `xdy/dx=ylogy`
Find dy/dx if x sin y + y sin x = 0.
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following:
sin2 y + cos xy = k
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
If f (x) = |x − 2| write whether f' (2) exists or not.
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx) if y = cos^-1 (√x)`
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : apx+q
Find the nth derivative of the following : cos x
Find the nth derivative of the following : sin (ax + b)
Find the nth derivative of the following : cos (3 – 2x)
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `2x + 3y = sin x` is:-
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
Find `dy/dx if, x= e^(3t), y = e^sqrtt`
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.
If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`