English

Find dydx if x = e3t, y=et. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.

Sum

Solution

x = `"e"^"3t"`

Differentiating both sides w.r.t. t, we get

`"dx"/"dt" = "e"^"3t" * "d"/"dt" ("3t")`

`= "e"^"3t" * (3)`

∴ `"dx"/"dt" = 3"e"^"3t"`

y = `"e"^(sqrt"t")`

Differentiating both sides w.r.t. t, we get

`"dy"/"dt" = "e"^(sqrt"t") * "d"/"dt" (sqrt"t")`

`"dy"/"dt" = "e"^(sqrt"t") * 1/(2 sqrt"t")`

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt") = "e"^(sqrt"t")/((2 sqrt"t")/(3"e"^"3t"))`

∴ `"dy"/"dx" = 1/(6 sqrt"t")  "e"^(sqrt"t" - "3t")`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [Page 100]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q IV] 16) | Page 100

RELATED QUESTIONS

If y=eax ,show that  `xdy/dx=ylogy`


Find dy/dx if x sin y + y sin x = 0.


if `x^y + y^x = a^b`then Find `dy/dx`


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If f (x) = |x − 2| write whether f' (2) exists or not.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Find `(dy)/(dx) if y = cos^-1 (√x)`


If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.


Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : cos x


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______


`(dy)/(dx)` of `2x + 3y = sin x` is:-


Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`


Find `(d^2y)/(dy^2)`, if y = e4x


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×