English

Solve the following : f(x) = –x, for – 2 ≤ x < 0= 2x, for 0 ≤ x < 2= 18-x4, for 2 < x ≤ 7g(x) = 6 – 3x, for 0 ≤ x < 2= 2x-43, for 2 < x ≤ 7Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?

Sum

Solution

u(x) = f[g(x)]
∴ `u'(x) = "d"/"dx"{f[g(x)}`

= `f'[g(x)]."d"/"dx"[g(x)]`
= f'[gx)] x g'(x)
∴ u'(1) = f'[g(1)] x g'(1)
= f'(3) x g'(1)                  ...(1)
                       ...[∵ g(x) = 6 – 3x, 0 ≤ x ≤ 2]
Now, f(x) = `(18 - x)/(4)`, for 2 < x ≤ 7
and g(x) = 6 – 3x, for 0 < x ≤ 2
∴ f'(x) = `(1)/(4)(0 - 1) = -(1)/(4)`, for 2 < x ≤ 7
and g'(x) = 0 – 3(1) = – 3, for 0 < x ≤ 2
∴ `f'(3) = -(1)/(4) and g'(1)` = – 3
∴ from (1),
u'(1) = `-(1)/(4)(-3) = (3)/(4)`
Now, v(x) = g[f(x)]
∴ v'(x) = `"d"/"dx"{g[f(x)]}`

= `g'[f(x)]."d"/"dx"[f(x)]`
= g'[f(x)] x f'(x)
∴ v'(1) = g'[f(1)] x f'(x)
= g'(2) x f'(1)                  ...(2)
                       ...[∵ f(x) = 2x, 0 ≤ x ≤ 2]
Now, g(x) = 6 – 3x, for 0 ≤ x ≤ 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
∴ g"(x) = 0 – 3 x 1 = – 3, for 0 ≤ x ≤ 2
and g'(x) = `(1)/(3)(2 xx 1 - 0) = (2)/(3)`, for 2 < x ≤ 7
∴ Lg'(2) ≠ Rg'(2)
∴ g'(2) does not exist
∴ from (2),
v'(1) does not exist
Also, w(x) = g[g(x)]
∴ w'(x) = `"d"/"dx"{g[g(x)]}`

= `g'[g(x)]."d"/"dx"[g(x)]`
= g'[g(x)] x g'(x)
∴ w'(1) = g'[g(1)] x g'(x)
= g'(3) x g'(1)                ...(3)
                    ...[∵ g(x) = 6 – 3x, 0 ≤ x ≤ 2]
Now, g(x) = 6 –3x, for 0 ≤ x ≤ 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
∴ g'(x) = 0 – 3 x 1 = – 3, for 0 ≤ x ≤ 2
and g'(x) = `(1)/(3)(2 xx 1 - 0) = (2)/(3)`, for 2 ≤ x ≤ 7
∴ g(3) = `(2)/(3) and g'(1)` = – 3
∴ from (3),
w'(1) = `(2)/(3)(-3)` = – 2.
Hence, u'(1) = `(3)/(4)`, v'(1) does not exist and w'(1) = – 2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Miscellaneous Exercise 1 (II) [Page 63]

APPEARS IN

RELATED QUESTIONS

If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find dy/dx if x sin y + y sin x = 0.


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dx/dy` in the following.

x2 + xy + y2 = 100


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


Find `dy/dx` in the following:

sin2 y + cos xy = k


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


if `x^y + y^x = a^b`then Find `dy/dx`


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


DIfferentiate x sin x w.r.t. tan x.


Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t  tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : cos (3 – 2x)


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


State whether the following is True or False:

The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×