Advertisements
Advertisements
प्रश्न
Solve the following :
f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?
उत्तर
u(x) = f[g(x)]
∴ `u'(x) = "d"/"dx"{f[g(x)}`
= `f'[g(x)]."d"/"dx"[g(x)]`
= f'[gx)] x g'(x)
∴ u'(1) = f'[g(1)] x g'(1)
= f'(3) x g'(1) ...(1)
...[∵ g(x) = 6 – 3x, 0 ≤ x ≤ 2]
Now, f(x) = `(18 - x)/(4)`, for 2 < x ≤ 7
and g(x) = 6 – 3x, for 0 < x ≤ 2
∴ f'(x) = `(1)/(4)(0 - 1) = -(1)/(4)`, for 2 < x ≤ 7
and g'(x) = 0 – 3(1) = – 3, for 0 < x ≤ 2
∴ `f'(3) = -(1)/(4) and g'(1)` = – 3
∴ from (1),
u'(1) = `-(1)/(4)(-3) = (3)/(4)`
Now, v(x) = g[f(x)]
∴ v'(x) = `"d"/"dx"{g[f(x)]}`
= `g'[f(x)]."d"/"dx"[f(x)]`
= g'[f(x)] x f'(x)
∴ v'(1) = g'[f(1)] x f'(x)
= g'(2) x f'(1) ...(2)
...[∵ f(x) = 2x, 0 ≤ x ≤ 2]
Now, g(x) = 6 – 3x, for 0 ≤ x ≤ 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
∴ g"(x) = 0 – 3 x 1 = – 3, for 0 ≤ x ≤ 2
and g'(x) = `(1)/(3)(2 xx 1 - 0) = (2)/(3)`, for 2 < x ≤ 7
∴ Lg'(2) ≠ Rg'(2)
∴ g'(2) does not exist
∴ from (2),
v'(1) does not exist
Also, w(x) = g[g(x)]
∴ w'(x) = `"d"/"dx"{g[g(x)]}`
= `g'[g(x)]."d"/"dx"[g(x)]`
= g'[g(x)] x g'(x)
∴ w'(1) = g'[g(1)] x g'(x)
= g'(3) x g'(1) ...(3)
...[∵ g(x) = 6 – 3x, 0 ≤ x ≤ 2]
Now, g(x) = 6 –3x, for 0 ≤ x ≤ 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
∴ g'(x) = 0 – 3 x 1 = – 3, for 0 ≤ x ≤ 2
and g'(x) = `(1)/(3)(2 xx 1 - 0) = (2)/(3)`, for 2 ≤ x ≤ 7
∴ g(3) = `(2)/(3) and g'(1)` = – 3
∴ from (3),
w'(1) = `(2)/(3)(-3)` = – 2.
Hence, u'(1) = `(3)/(4)`, v'(1) does not exist and w'(1) = – 2.
APPEARS IN
संबंधित प्रश्न
If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Find `dy/dx if x^3 + y^2 + xy = 7`
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
Differentiate tan-1 (cot 2x) w.r.t.x.
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
DIfferentiate x sin x w.r.t. tan x.
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
Find the nth derivative of the following : eax+b
Find the nth derivative of the following : apx+q
Find the nth derivative of the following : cos (3 – 2x)
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1:
x | f(x) | g(x) | f')x) | g'(x) |
0 | 1 | 5 | `(1)/(3)` | |
1 | 3 | – 4 | `-(1)/(3)` | `-(8)/(3)` |
(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx"` if, yex + xey = 1
Choose the correct alternative.
If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?`
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
`(dy)/(dx)` of `2x + 3y = sin x` is:-
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`