हिंदी

Solve the following : The values of f(x), g(x), f'(x) and g'(x) are given in the following table :Match the following : - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12
योग

उत्तर

(A) `"d"/"dx"[f(g(x))]` 
= `f'(g(x))."d"/"dx"(g(x))`
= f'(g(x)) xg'(x)

∴ `"d"/"dx"[f(g(x))]` at x = – 1
= f'(g(– 1)) x g'(– 1)
= f'(2) x g'(– 1)   ...[∵ g(x) = 2, when x = – 1]
= – 5 x 4
= – 20

(B) `"d"/"dx"[g(f(x) - 1)]`

= `g'(f(x) - 1)."d"/"dx"[f(x) - 1]`
= g'(f(x) – 1) x [f'(x) –  0]

∴ `"d"/"dx"[gf(x) - 1]` at x = – 1
= g'(f(– 1)– 1) xx f'( –1)
= g'(3 – 1) x f'(– 1)  ...[∵ f(x) 33, when x = – 1]
= g'(2) x f'(– 1)
= (– 4)(– 3)
= 12

(C) `"d"/"dx"[f(f(x) - 3)]`

= `f'(f(x) - 3)."d"/"dx"[f(x) - 3]`
= f'(f(x) – 3) x [f'(x) – 0]

∴ `"d"/"dx"[f(f(x) - 3)]` at = 2
= f"(f(2) – 3) x f'(2)
= f'(2 – 3) x f'(2)    ...[∵  f(x) = 2, when x = 2]
= f'(– 1) x f'(2)
= (– 3)(– 5)
= 15

(D) `"d"/"dx"[g(g(x))]`

= `g'(g(x))."d"/"dx"[g(x)]`
= g'(g(x)) x g'(x)

∴ `"d"/"dx"[g(g(x))]`at x = 2
= g'(g(2)) x g'(2)
= g'(– 1) c g'(2)    ...[∵ g(x) = – 1at x = 2]
= 4(– 4)
= – 16
Hence, (A) →3, (B) → 5, (C) → 4, (D) → 1.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Miscellaneous Exercise 1 (II) [पृष्ठ ६३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Miscellaneous Exercise 1 (II) | Q 2 | पृष्ठ ६३

संबंधित प्रश्न

Differentiate the following w.r.t.x:

`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x:

y = (25)log5(secx) − (16)log4(tanx) 


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x : `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`


Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20


Differentiate y = `sqrt(x^2 + 5)` w.r. to x


Differentiate y = etanx w.r. to x


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If y = cosec x0, then `"dy"/"dx"` = ______.


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.


Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×