Advertisements
Advertisements
प्रश्न
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
उत्तर
(A) `"d"/"dx"[f(g(x))]`
= `f'(g(x))."d"/"dx"(g(x))`
= f'(g(x)) xg'(x)
∴ `"d"/"dx"[f(g(x))]` at x = – 1
= f'(g(– 1)) x g'(– 1)
= f'(2) x g'(– 1) ...[∵ g(x) = 2, when x = – 1]
= – 5 x 4
= – 20
(B) `"d"/"dx"[g(f(x) - 1)]`
= `g'(f(x) - 1)."d"/"dx"[f(x) - 1]`
= g'(f(x) – 1) x [f'(x) – 0]
∴ `"d"/"dx"[gf(x) - 1]` at x = – 1
= g'(f(– 1)– 1) xx f'( –1)
= g'(3 – 1) x f'(– 1) ...[∵ f(x) 33, when x = – 1]
= g'(2) x f'(– 1)
= (– 4)(– 3)
= 12
(C) `"d"/"dx"[f(f(x) - 3)]`
= `f'(f(x) - 3)."d"/"dx"[f(x) - 3]`
= f'(f(x) – 3) x [f'(x) – 0]
∴ `"d"/"dx"[f(f(x) - 3)]` at = 2
= f"(f(2) – 3) x f'(2)
= f'(2 – 3) x f'(2) ...[∵ f(x) = 2, when x = 2]
= f'(– 1) x f'(2)
= (– 3)(– 5)
= 15
(D) `"d"/"dx"[g(g(x))]`
= `g'(g(x))."d"/"dx"[g(x)]`
= g'(g(x)) x g'(x)
∴ `"d"/"dx"[g(g(x))]`at x = 2
= g'(g(2)) x g'(2)
= g'(– 1) c g'(2) ...[∵ g(x) = – 1at x = 2]
= 4(– 4)
= – 16
Hence, (A) →3, (B) → 5, (C) → 4, (D) → 1.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate y = etanx w.r. to x
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If y = cosec x0, then `"dy"/"dx"` = ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.
If y = log (sec x + tan x), find `dy/dx`.