Advertisements
Advertisements
प्रश्न
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
उत्तर
(A) `"d"/"dx"[f(g(x))]`
= `f'(g(x))."d"/"dx"(g(x))`
= f'(g(x)) xg'(x)
∴ `"d"/"dx"[f(g(x))]` at x = – 1
= f'(g(– 1)) x g'(– 1)
= f'(2) x g'(– 1) ...[∵ g(x) = 2, when x = – 1]
= – 5 x 4
= – 20
(B) `"d"/"dx"[g(f(x) - 1)]`
= `g'(f(x) - 1)."d"/"dx"[f(x) - 1]`
= g'(f(x) – 1) x [f'(x) – 0]
∴ `"d"/"dx"[gf(x) - 1]` at x = – 1
= g'(f(– 1)– 1) xx f'( –1)
= g'(3 – 1) x f'(– 1) ...[∵ f(x) 33, when x = – 1]
= g'(2) x f'(– 1)
= (– 4)(– 3)
= 12
(C) `"d"/"dx"[f(f(x) - 3)]`
= `f'(f(x) - 3)."d"/"dx"[f(x) - 3]`
= f'(f(x) – 3) x [f'(x) – 0]
∴ `"d"/"dx"[f(f(x) - 3)]` at = 2
= f"(f(2) – 3) x f'(2)
= f'(2 – 3) x f'(2) ...[∵ f(x) = 2, when x = 2]
= f'(– 1) x f'(2)
= (– 3)(– 5)
= 15
(D) `"d"/"dx"[g(g(x))]`
= `g'(g(x))."d"/"dx"[g(x)]`
= g'(g(x)) x g'(x)
∴ `"d"/"dx"[g(g(x))]`at x = 2
= g'(g(2)) x g'(2)
= g'(– 1) c g'(2) ...[∵ g(x) = – 1at x = 2]
= 4(– 4)
= – 16
Hence, (A) →3, (B) → 5, (C) → 4, (D) → 1.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
Differentiate y = etanx w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.