मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t. x : (logx)x – (cos x)cotx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 

बेरीज

उत्तर

Let y = (log x)x – (cos x)cotx 
Put u = (log x)x and v = (cos x)cotx 
Then y = u – v
∴ `"dy"/"dx" = "du"/"dx" - "dv"/"dx"`  ...(1)
Take u = (log x)x
∴ log u = log(log x)x = x.log(log x)
Differentiating both sides w.r.t. x, we get
`1/u."du"/"dx" = "d"/"dx"[x.log(logx)]`

= `x"d"/"dx"[log(logx)] + log(logx)."d"/"dx"(x)`

= `x xx 1/logx."d"/"dx"(logx) + log(logx) xx 1`

= `x xx 1/logx xx 1/x + log(logx)`

∴ `"du"/"dx" = u[1/logx + log(logx)]`

= `(logx)^x[1/logx + log(logx)]`   ...(2)
Also v = (cos x)cotx
∴ log v = log(cos x)cotx = (cot x).(log cos x)
Differentiating both sides w.r.t. x, we get
`1/v."dv"/"dx" = "d"/dx"[(cotx).log(cosx)]`

= `(cotx)."d"/"dx"(log cosx) + (log cosx)."d"/"dx"(cotx)`

= `cotx xx 1/cosx."d"/"dx"(cosx) + (logcosx)(-"cosec"^2x)`

= `cotx xx 1/cosx xx (-sinx) - ("cosec"^2x)(logcosx)`

∴ `"dv"/"dx" = v[1/tanx xx (-tanx) - ("cosec"^2x)(logcosx)]`

= –(cos x)cotx[1 + (cosec2x)(log cos x)] ....(3)
From (1), (2) and (3), we get

∴ `"dy"/"dx" = (logx)^x[1/logx + log(logx)] + (cosx)^cotx[1 + ("cosec"^2x)(logcosx)]`.

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x:

`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`


Differentiate the following w.r.t.x:

`log[a^(cosx)/((x^2 - 3)^3 logx)]`


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x : (sin xx)


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If f(x) is odd and differentiable, then f′(x) is


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______ 


If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×