मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t.x: (1+cos(5x2)1-cos(5x2)) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t.x:

`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`

बेरीज

उत्तर

Using `log(a/b)` = log a − log b

log ab = b log a

`y = log(sqrt(1 + cos ((5x)/2))) - log(sqrt(1 - cos ((5x)/2)))`

`y = log[1 + cos ((5x)/2)]^(1/2) -  log[1 - cos((5x)/2)]^(1/2)`

`y = (1)/(2)log[1 + cos((5x)/2)] - (1)/(2)log[(1 - cos((5x)/2)]`

Differentiating w.r.t. x

`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × "d"/"dx"(1 + cos  (5x)/2) - 1/2 × 1/(1 - cos((5x)/2)) × "d"/"dx"(1 - cos  (5x)/(2))`

 

`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × [0 - sin ((5x)/2)] . 5/2 "d"/"dx" x - 1/2 × 1/(1 - cos((5x)/2)) × [0 + sin ((5x)/2)] . 5/2 "d"/"dx" x`

 

`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × - sin ((5x)/2) . 5/2 - 1/2 × 1/(1 - cos((5x)/2)) × sin ((5x)/2) . 5/2`

 

`"dy"/"dx" = [- 5sin((5x)/2)]/[4(1 + cos((5x)/2))] - [5sin((5x)/2)]/[4(1 - cos((5x)/2))]`

 

`"dy"/"dx" = [- 5sin((5x)/2)]/4. [1/(1 + cos((5x)/(2))) + 1/(1 - cos((5x)/(2)))]`

 

`"dy"/"dx" = [- 5sin((5x)/2)]/4. [(1 - cos ((5x)/2) + 1 + cos ((5x)/2)]/(1^2 - cos^2 ((5x)/2))]`

 

`"dy"/"dx" = [- 5sin((5x)/2)]/4. 2/(sin^2((5x)/2))`  ...[ ∵ 1 – cos2x = sin2x]

 

`"dy"/"dx" = - 5/2 . 1/(sin((5x)/2))`

 

`"dy"/"dx" = - 5/2 . "cosec" ((5x)/2)`

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.1 [पृष्ठ १२]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x: log[cos(x3 – 5)]


Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x:

`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t.x:

y = (25)log5(secx) − (16)log4(tanx) 


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Differentiate y = etanx w.r. to x


Differentiate sin2 (sin−1(x2)) w.r. to x


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______ 


y = {x(x - 3)}2 increases for all values of x lying in the interval.


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×