Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
उत्तर
Let y = `cot^-1((1 + 35x^2)/(2x))`
= `tan^-1((2x)/(1 + 35x^2)) ...[∵ cot^-1 x = tan^-1(1/x)]`
= `tan^-1[(7x - 5x)/(1 + (7x)(5x))]`
= tan–1(7x) – tan–1(5x)
Differentiating w.r.t.x, we get
`(dy)/dx = d/dx [tan^-1 (7x) - tan^-1(5x)]`
= `d/dx [tan^-1(7x)] - d/dx [tan^-1(5x)]`
= `1/(1 + (7x)^2) * d/dx (7x) - 1/(1 + (5x)^2) * d/dx (5x)`
= `1/(1 + 49x^2) xx 7 - 1/(1 + 25x^2) xx 5`
= `7/(1 + 49x^2) - 5/(1 + 25x^2)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.