Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
उत्तर १
Let y = (x3 – 2x – 1)5
Differentiating w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"` (x3 – 2x – 1)5
= 5(x3 – 2x – 1)4 × `"d"/"dx"` (x3 – 2x – 1)
= 5(x3 – 2x – 1)4 × (3x2 – 2 × 1 – 0)
= 5(3x2 – 2)(x3 – 2x – 1)4.
उत्तर २
Let y = (x3 – 2x – 1)5
Put u = x3 – 2x – 1.
Then y = u5
∴ `"dy"/"du" = "d"/"du"` (u5) = 5u4
= 5(x3 – 2x – 1)4
and
`"du"/"dx" = "d"/"dx"`(x3 – 2x – 1)
= 3x2 – 2 × 1 – 0
= 3x2 – 2
∴ `"dy"/"dx" = "dy"/"du" xx "du"/"dx"`
= 5(x3 – 2x – 1)4 (3x2 – 2)
= 5(3x2 – 2)(x3 – 2x – 1)4.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
Derivative of (tanx)4 is ______
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.