Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
उत्तर
Let y = `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"((e^sqrt(x) + 1)/(e^sqrt(x) - 1))`
= `((e^sqrt(x) - 1)"d"/"dx"(e^sqrt(x) + 1) - (e^sqrt(x) + 1)"d"/"dx"(e^sqrt(x) - 1))/(e^sqrt(x) - 1)^2`
= `((e^sqrt(x) - 1)[e^sqrt(x)."d"/"dx"(sqrt(x)) + 0] - (e^sqrt(x) + 1)[e^sqrt(x)."d"/"dx"(sqrt(x)) - 0])/(e^sqrt(x) - 1)^2`
= `((e^sqrt(x) - 1)[e^sqrt(x) xx 1/(2sqrt(x))] - (e^sqrt(x) + 1)[e^sqrt(x) xx 1/(2sqrt(x))])/(e^sqrt(x) - 1)^2`
= `((e^sqrt(x))/(2sqrt(x))(e^sqrt(x) - 1 - e^sqrt(x) - 1))/(e^sqrt(x) - 1)^2`
= `(-e^sqrt(x))/(sqrt(x)(e^sqrt(x) - 1)^2`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x: xe + xx + ex + ee
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
If y = cosec x0, then `"dy"/"dx"` = ______.
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
If y = log (sec x + tan x), find `dy/dx`.