मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Show that dydxdydx=yx in the following, where a and p are constants : sec(x5+y5x5-y5) = a2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 

बेरीज

उत्तर

`sec((x^5 + y^5)/(x^5 - y^5))` = a2 

∴ `(x^5 + y^5)/(x^5 - y^5) = sec^-1(a^2)` = k
∴ x5 + y5 = kx5 – ky5
∴ (1 + k)y5 = (k – 1)x5

∴  `y^5/x^5 = (k - 1)/(k + 1)`

∴  `y/x = ((k - 1)/(k + 1))^(1/5)`, a constant
Differentiating both sides w.r.t. x, we get
`"d"/"dx"(y/x)` = 0

∴ `(x."dy"/"dx" - y."d"/"dx"(x))/(x^2)` = 0

∴ `x"dy"/"dx" - y xx 1` = 0

∴ `"dy"/"dx" = y/x.`
Alternative Method :
`sec((x^5 + y^5)/(x^5 - y^5))` = a2

∴ `(x^5 + y^5)/(x^5 - y^5)` = sec–1a2 = k    ...(Say)
∴ x5 + y5 = kx5 – ky5
∴ (1 + k)y5 = (k – 1)x5
∴ `y^5/x^5 = (k - 1)/(k + 1)`                     ...(1)
∴ y5 = k'x5, where k' = `(k - 1)/(k + 1)`
Differentiating both sides w.r.t. x, we get
`5y^4"dy"/"dx"` = k' x 5x4

∴ `"dy"/"dx" = k'.x^4/y^4`

∴ `"dy"/"dx" = ((k - 1)/(k + 1)).x^4/y^4`

= `y^5/x^5 xx x^4/y^4`                         ...[By (1)]

∴ `"dy"/"dx" = y/x`.

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`


Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x: `log[tan(x/2)]`


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


Differentiate y = etanx w.r. to x


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


y = {x(x - 3)}2 increases for all values of x lying in the interval.


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×