Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
उत्तर
Let y = `(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiating w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"[(x^2 + 2)^4/(sqrt(x^2 + 5))]`
`"dy"/"dx" = (sqrt(x^2 + 5)."d"/"dx"(x^2 + 2)^4 - (x^2 + 2)^4."d"/"dx"(sqrt(x^2 + 5)))/(sqrt(x^2 + 5))^2`
`"dy"/"dx" = (sqrt(x^2 + 5) × 4(x^2 + 2)^3."d"/"dx"(x^2 + 2) - (x^2 + 2)^4 × 1/(2(sqrt(x^2 + 5)))."d"/"dx"(x^2 + 5))/(x^2 + 5)`
`"dy"/"dx" = (sqrt(x^2 + 5) × 4(x^2 + 2)^3.(2x + 0) - (x^2 + 2)^4/(2sqrt(x^2 + 5)) × (2x + 0))/(x^2 + 5)`
`"dy"/"dx" = (8x(x^2 + 5)(x^2 + 2)^3 - x(x^2 + 2)^4)/(x^2 + 5)^(3/2)`
`"dy"/"dx" = (x(x^2 + 2)^3[8(x^2 + 5) - (x^2 + 2)])/(x^2 + 5)^(3/2)`
`"dy"/"dx" = (x(x^2 + 2)^3(8x^2 + 40 - x^2 - 2))/(x^2 + 5)^(3/2)`
`"dy"/"dx" = (x(x^2 + 2)^3(7x^2 + 38))/(x^2 + 5)^(3/2)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
If y = cosec x0, then `"dy"/"dx"` = ______.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.
If y = log (sec x + tan x), find `dy/dx`.