मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Show that dydxdydx=yx in the following, where a and p are constant: xpy4 = (x + y)p+4, p ∈ N - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N

बेरीज

उत्तर

xpy4 = (x + y)p+4 

Taking log

log(xpy4) = log(x + y)p+4

logxp + logy4 = (p + 4) log(x + y)

p log x + 4 log y = (p + 4) log(x + y)

Differentiating both sides w.r.t. x, we get

`p."d"/"dx"logx + 4*"d"/"dx"logy = (p + 4)"d"/"dx"log(x + y)`

`p/x + 4(1)/y"dy"/"dx" = (p + 4)(1)/(x + y)(1 + "dy"/"dx")`

`"p"/4 + 4/y"dy"/"dx" = ((p + 4))/((x + y)) + (p + 4)/((x + y))"dy"/"dx"`

`"dy"/"dx"[4/y - ((p + 4))/((x + y))] = (p + 4)/(x + y) - p/x`

`"dy"/"dx"[(4(x + y) -y(p + 4))/(y(x + y))] = (x(p + 4) -p(x + y))/(x(x + y)`

`"dy"/"dx"[(4x + 4y - py - 4y)/(y(x + y))] = (px + 4x - px - py)/(x(x + y)`

`"dy"/"dx"[(4x - py)/y] = (4x - py)/x`

`"dy"/"dx" = y/x`

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x: log[cos(x3 – 5)]


Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x :

cos3[cos–1(x3)]


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


Derivative of (tanx)4 is ______ 


If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.


Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×