Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
उत्तर
Let y = `[(tanx)^(tanx)]^(tanx)`
∴ log y = `log[(tanx)^(tanx)]tanx`
= tanx. log(tanx)tanx
= tanx. tanx log(tan x)
= (tanx)2. log(tan x)
Differentiating both sides w.r.t. x, we get
`1/y."dy"/"dx" = "d"/"dx"[tanx)^2.log(tanx)]`
= `(tanx)^2."d"/"dx"(log tanx) + (log tanx)."d"/"dx"(tanx)^2`
= `(tanx)^2. xx 1/tanx."d"/"dx"(tanx) + (log tanx) xx 2tanx."d"/"dx"(tanx)`
= `(tanx)^2 xx 1/tanx.sec^2x + (log tanx) xx 2 tanxsec^2x`
∴ `"dy"/"dx" = y[(tanx)(sec^2x) + (logtanx)(2tanxsec^2x)]`
= [(tanx)tanx]tanx.(tanxsec2x)[1 + 2logtanx]
If x = `pi/(4)`, then
`"dy"/"dx" = [(tan pi/4)^(tan pi/4)]^(tan pi/4)(tan pi/4 sec^2 pi/4)[1 + 2log tan pi/4]`
= `[(1)^1]^1.[1(sqrt(2))^2][1 + 2log1]`
= 1 x 2 x 1 ...[∵ log 1 = 0]
= 2.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If y = cosec x0, then `"dy"/"dx"` = ______.
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.