मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t. x : at[(tanx)tanx]tanxat x=π4 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`

बेरीज

उत्तर

Let y = `[(tanx)^(tanx)]^(tanx)`
∴ log y = `log[(tanx)^(tanx)]tanx`
= tanx. log(tanx)tanx
= tanx. tanx log(tan x)
= (tanx)2. log(tan x)
Differentiating both sides w.r.t. x, we get
`1/y."dy"/"dx" = "d"/"dx"[tanx)^2.log(tanx)]`

= `(tanx)^2."d"/"dx"(log tanx) + (log tanx)."d"/"dx"(tanx)^2`

= `(tanx)^2. xx 1/tanx."d"/"dx"(tanx) + (log tanx) xx 2tanx."d"/"dx"(tanx)`

= `(tanx)^2 xx 1/tanx.sec^2x + (log tanx) xx 2 tanxsec^2x`

∴ `"dy"/"dx" = y[(tanx)(sec^2x) + (logtanx)(2tanxsec^2x)]`

= [(tanx)tanx]tanx.(tanxsec2x)[1 + 2logtanx]

If x = `pi/(4)`, then

`"dy"/"dx" = [(tan pi/4)^(tan  pi/4)]^(tan  pi/4)(tan  pi/4 sec^2  pi/4)[1 + 2log tan  pi/4]`
= `[(1)^1]^1.[1(sqrt(2))^2][1 + 2log1]`
= 1 x 2 x 1                  ...[∵ log 1 = 0]
= 2.

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: log[cos(x3 – 5)]


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t. x : cot–1(x3)


Differentiate the following w.r.t. x : cot–1(4x)


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`


Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


y = {x(x - 3)}2 increases for all values of x lying in the interval.


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If y = cosec x0, then `"dy"/"dx"` = ______.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×