Advertisements
Advertisements
Question
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Solution
Let y = `[(tanx)^(tanx)]^(tanx)`
∴ log y = `log[(tanx)^(tanx)]tanx`
= tanx. log(tanx)tanx
= tanx. tanx log(tan x)
= (tanx)2. log(tan x)
Differentiating both sides w.r.t. x, we get
`1/y."dy"/"dx" = "d"/"dx"[tanx)^2.log(tanx)]`
= `(tanx)^2."d"/"dx"(log tanx) + (log tanx)."d"/"dx"(tanx)^2`
= `(tanx)^2. xx 1/tanx."d"/"dx"(tanx) + (log tanx) xx 2tanx."d"/"dx"(tanx)`
= `(tanx)^2 xx 1/tanx.sec^2x + (log tanx) xx 2 tanxsec^2x`
∴ `"dy"/"dx" = y[(tanx)(sec^2x) + (logtanx)(2tanxsec^2x)]`
= [(tanx)tanx]tanx.(tanxsec2x)[1 + 2logtanx]
If x = `pi/(4)`, then
`"dy"/"dx" = [(tan pi/4)^(tan pi/4)]^(tan pi/4)(tan pi/4 sec^2 pi/4)[1 + 2log tan pi/4]`
= `[(1)^1]^1.[1(sqrt(2))^2][1 + 2log1]`
= 1 x 2 x 1 ...[∵ log 1 = 0]
= 2.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Differentiate y = etanx w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
If f(x) is odd and differentiable, then f′(x) is
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
Derivative of (tanx)4 is ______
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.